ترغب بنشر مسار تعليمي؟ اضغط هنا

Three-Nucleon Force in the 4He Scattering System

73   0   0.0 ( 0 )
 نشر من قبل Hartmut M. Hofmann
 تاريخ النشر 2002
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on a consistent, microscopic calculation of the bound and scattering states in the 4He system employing modern realistic two-nucleon and three-nucleon potentials in the framework of the resonating group model (RGM). We present for comparison with these microscopic RGM calculations the results from a charge-independent, Coulomb-corrected R-matrix analysis of all types of data for reactions in the A=4 system. Comparisons are made for selected examples of phase shifts and measurements from reactions sensitive to three-nucleon force effects.



قيم البحث

اقرأ أيضاً

We report on microscopic calculations for the 4He compound system in the framework of the resonating group model employing realistic nucleon-nucleon and three nucleon forces. The resulting scattering phase shifts are compared to those of a comprehens ive R-matrix analysis of all data in this system, which are available in numerical form. The agreement between calculation and analysis is in most cases very good. Adding three-nucleon forces yields in many cases large effects. For a few cases the new agreement is striking. We relate some differencies between calculation and analysis to specific data and discuss neccessary experiments to clarify the situation. From the results we conclude that the data of the 4He system might be well suited to determine the structure of the three-nucleon force.
273 - Y. Z. Ma , F. R. Xu , N. Michel 2020
Starting from chiral two-nucleon (2NF) and chiral three-nucleon (3NF) potentials, we present a detailed study of 17Ne, a Borromean system, with the Gamow shell model which can capture continuum effects. More precisely, we take advantage of the normal -ordering approach to include the 3NF and the Berggren representation to treat bound, resonant and continuum states on equal footing in a complex-momentum plane. In our framework, 3NF is essential to reproduce the Borromean structure of 17Ne, while the continuum is more crucial for the halo property of the nucleus. The two-proton halo structure is demonstrated by calculating the valence proton density and correlation density. The astrophysically interesting $3/2^-$ excited state has its energy above the threshold of the proton emission, and therefore the two-proton decay should be expected from the state.
A new measurement of the p-d differential cross section at Ep= 1 MeV has been performed. These new data and older data sets at energies below the deuteron breakup are compared to calculations using the two-nucleon Argonne v18 and the three-nucleon Ur bana IX potentials. A quantitative estimate of the capability of these interactions to describe the data is given in terms of a chi^2 analysis. The chi^2 per datum drastically improves when the three-nucleon interaction is included in the Hamiltonian.
We investigate the effects of chiral NNLO three-nucleon force (3NF) on nucleus-nucleus elastic scattering, using a standard prescription based on the Brueckner-Hartree-Fock method and the g-matrix folding model. The g-matrix calculated in nuclear mat ter from the chiral N3LO two-nucleon forces (2NF) is close to that from the Bonn-B 2NF. Because the Melbourne group have already developed a practical g-matrix interaction by localizing the nonlocal g-matrix calculated from the Bonn-B 2NF, we consider the effects of chiral 3NF, in this first attempt to study the 3NF effects, by modifying the local Melbourne g-matrix according to the difference between the g-matrices of the chiral 2NF and 2NF+3NF. For nucleus-nucleus elastic scattering, the 3NF corrections make the folding potential less attractive and more absorptive. The latter novel effect is due to the enhanced tensor correlations in triplet channels. These changes reduce the differential cross section at the middle and large angles, improving the agreement with the experimental data for 16O-16O scattering at 70 MeV/nucleon and 12C-12C scattering at 85 MeV/nucleon.
90 - B. Borasoy , H. Krebs , D. Lee 2005
We study the triton and three-nucleon force at lowest chiral order in pionless effective field theory both in the Hamiltonian and Euclidean nuclear lattice formalism. In the case of the Euclidean lattice formalism, we derive the exact few-body worldl ine amplitudes corresponding to the standard many-body lattice action. This will be useful for setting low-energy coefficients in future nuclear lattice simulations. We work in the Wigner SU(4)-symmetric limit where the S-wave scattering lengths {1}S{0} and {3}S{1} are equal. By comparing with continuum results, we demonstrate for the first time that the nuclear lattice formalism can be used to study few-body nucleon systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا