ترغب بنشر مسار تعليمي؟ اضغط هنا

The triton and three-nucleon force in nuclear lattice simulations

91   0   0.0 ( 0 )
 نشر من قبل Bugra Borasoy
 تاريخ النشر 2005
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the triton and three-nucleon force at lowest chiral order in pionless effective field theory both in the Hamiltonian and Euclidean nuclear lattice formalism. In the case of the Euclidean lattice formalism, we derive the exact few-body worldline amplitudes corresponding to the standard many-body lattice action. This will be useful for setting low-energy coefficients in future nuclear lattice simulations. We work in the Wigner SU(4)-symmetric limit where the S-wave scattering lengths {1}S{0} and {3}S{1} are equal. By comparing with continuum results, we demonstrate for the first time that the nuclear lattice formalism can be used to study few-body nucleon systems.



قيم البحث

اقرأ أيضاً

Nucleon-nucleon (NN) potential is studied by lattice QCD simulations in the quenched approximation, using the plaquette gauge action and the Wilson quark action on a 32^4 (simeq (4.4 fm)^4) lattice. A NN potential V_{NN}(r) is defined from the equal- time Bethe-Salpeter amplitude with a local interpolating operator for the nucleon. By studying the NN interaction in the ^1S_0 and ^3S_1 channels, we show that the central part of V_{NN}(r) has a strong repulsive core of a few hundred MeV at short distances (r alt 0.5 fm) surrounded by an attractive well at medium and long distances. These features are consistent with the known phenomenological features of the nuclear force.
Projection Monte Carlo calculations of lattice Chiral Effective Field Theory suffer from sign oscillations to a varying degree dependent on the number of protons and neutrons. Hence, such studies have hitherto been concentrated on nuclei with equal n umbers of protons and neutrons, and especially on the alpha nuclei where the sign oscillations are smallest. Here, we introduce the symmetry-sign extrapolation method, which allows us to use the approximate Wigner SU(4) symmetry of the nuclear interaction to systematically extend the Projection Monte Carlo calculations to nuclear systems where the sign problem is severe. We benchmark this method by calculating the ground-state energies of the $^{12}$C, $^6$He and $^6$Be nuclei, and discuss its potential for studies of neutron-rich halo nuclei and asymmetric nuclear matter.
139 - H. Nemura , N. Ishii , S. Aoki 2009
We calculate potentials between a proton and a $Xi^0$ (hyperon with strangeness -2) through the equal-time Bethe-Salpeter wave function, employing quenched lattice QCD simulations with the plaquette gauge action and the Wilson quark action on (4.5 fm )^4 lattice at the lattice spacing $a simeq 0.14$ fm. The ud quark mass in our study corresponds to $m_{pi}simeq 0.37$ and 0.51 GeV, while the s quark mass corresponds to the physical value of $m_K$. The central $p Xi^0$ potential has a strong (weak) repulsive core in the $^1S_0$ ($^3S_1$) channel for $r lsim 0.6$ fm, while the potential has attractive well at the medium and long distances (0.6 fm $lsim r lsim 1.2$ fm) in both channels. The sign of the $p Xi^0$ scattering length and its quark mass dependence indicate a net attraction in both channels at low energies.
We calculate the energy per particle of symmetric nuclear matter and pure neutron matter using the microscopic many-body Brueckner-Hartree-Fock (BHF) approach and employing the Argonne V18 (AV18) nucleon-nucleon (NN) potential supplemented with two d ifferent three-nucleon force models recently constructed to reproduce the binding energy of $^3$H, $^3$He and $^4$He nuclei as well as the neutron-deuteron doublet scattering length. We find that none of these new three-nucleon force models is able to reproduce simultaneously the empirical saturation point of symmetric nuclear matter and the properties of three- and four-nucleon systems.
We explore the lattice spacing dependence in Nuclear Lattice Effective Field Theory for few-body systems up to next-to-next-to leading order in chiral effective field theory including all isospin breaking and electromagnetic effects, the complete two -pion-exchange potential and the three-nucleon forces. We calculate phase shifts in the neutron-proton system and proton-proton systems as well as the scattering length in the neutron-neutron system. We then perform a full next-to-next-to-leading order calculation with two-nucleon and three-nucleon forces for the triton and helium-4 and analyse their binding energy correlation. We show how the Tjon band is reached by decreasing the lattice spacing and confirm the continuum observation that a four-body force is not necessary to describe light nuclei.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا