ﻻ يوجد ملخص باللغة العربية
Recent experimental data and progress in nuclear structure modeling have lead to improved descriptions of astrophysically important weak-interaction processes. The review discusses these advances and their applications to hydrostatic solar and stellar burning, to the slow and rapid neutron-capture processes, to neutrino nucleosynthesis, and to explosive hydrogen burning. Special emphasis is given to the weak-interaction processes associated with core-collapse supernovae. Despite some significant progress, important improvements are still warranted. Such improvements are expected to come from future radioactive ion-beam facilities.
Relativistic energy density functionals have become a standard framework for nuclear structure studies of ground-state properties and collective excitations over the entire nuclide chart. We review recent developments in modeling nuclear weak-interac
We utilize precise weak interaction experiments on atomic muon capture and beta decay in the A = 3 nuclei, and take into account the effects of nuclear anomalous thresholds to extract the pseudoscalar pi-^3He-^3H coupling parameter, G^{eff}(m_pi^2) =
The effective field theory of NN interactions in nuclear matter is considered. Due to the Pauli principle the effective NN amplitude is not affected by the shallow bound states. We show that the next-to-leading order terms in the chiral expansion of
Multiple high precision $beta$-decay measurements are being carried out these days on various nuclei, in search of beyond the Standard Model signatures. These measurements necessitate accurate standard model theoretical predictions to be compared wit
We obatin the ratio $F_i^A/F_i^{D}$(i=2,3, A=Be, C, Fe, Pb; D=Deuteron) in the case of weak and electromagnetic nuclear structure functions. For this, relativistic nuclear spectral function which incorporate the effects of Fermi motion, binding and n