ترغب بنشر مسار تعليمي؟ اضغط هنا

Chiral NN interaction in nuclear matter

170   0   0.0 ( 0 )
 نشر من قبل Dr. B. Krippa
 تاريخ النشر 1999
  مجال البحث
والبحث باللغة English
 تأليف B.Krippa




اسأل ChatGPT حول البحث

The effective field theory of NN interactions in nuclear matter is considered. Due to the Pauli principle the effective NN amplitude is not affected by the shallow bound states. We show that the next-to-leading order terms in the chiral expansion of the effective NN potential can be interpreted as corrections so the expansion is systematic. The value of potential energy per particle is calculated and some issues concerning the chiral effective theory of nuclear matter are outlined.



قيم البحث

اقرأ أيضاً

86 - B.Krippa 2000
The effective chiral theory of the in-medium NN interactions is considered. The shallow bound states, which complicate the effective field theory analysis in vacuum do not exist in matter. We show that the next-to-leading order terms in the chiral expansion of the effective Lagrangian can be interpreted as corrections so that the expansion is systematic. The Low Energy Effective Constants of this Lagrangian are found to satisfy the concept of naturalness. The potential energy per particle is calculated. The problems and challenges in constructing the chiral theory of nuclear matter are outlined.
We consider a chiral baryon-meson model for nucleons and their parity partners in mirror assignment interacting with pions, sigma and omega mesons to describe the liquid-gas transition of nuclear matter together with chiral symmetry restoration in th e high density phase. Within the mean-field approximation the model is known to provide a phenomenologically successful description of the nuclear-matter transition. Here, we go beyond this approximation and include mesonic fluctuations by means of the functional renormalization group. While these fluctuations do not lead to major qualitative changes in the phase diagram of the model, beyond mean-field, one is no-longer free to adjust the parameters so as to reproduce the binding energy per nucleon, the nuclear saturation density, and the nucleon sigma term all at the same time. However, the prediction of a clear first-order chiral transition at low temperatures inside the high baryon-density phase appears to be robust.
We report on shell-model calculations employing effective interactions derived from a new realistic nucleon-nucleon (NN) potential based on chiral effective field theory. We present results for 18O, 134Te, and 210Po. Our results are in excellent agre ement with experiment indicating a remarkable predictive power of the chiral NN potential for low-energy microscopic nuclear structure.
100 - Michael C. Birse 1998
Soft-pion theorems are used to show how chiral symmetry constrains the contributions of low-momentum pions to the quark condensate, the pion decay constant and hadron masses, all of which have been proposed as signals of partial restoration of chiral symmetry in matter. These have contributions of order T^2 for a pion gas or of order m_pi for cold nuclear matter, which have different coefficients in all three cases, showing that there are no simple relations between the changes to these quantities in matter. In particular, such contributions are absent from the masses of vector mesons and nucleons and so these masses cannot scale as any simple function of the quark condensate. More generally, pieces of the quark condensate that arise from low-momentum pions should not be associated with partial restoration of chiral symmetry.
We present a model for describing nuclear matter at finite density based on quarks interacting with chiral fields, sigma and pi and with vector mesons introduced as massive gauge fields. The chiral Lagrangian includes a logarithmic potential, associa ted with the breaking of scale invariance. We provide results for the soliton in vacuum and at finite density, using the Wigner-Seitz approximation. We show that the model can reach higher densities respect to the linear-sigma model and that the introduction of vector mesons allows to obtain saturation. This result was never obtained before in similar approaches.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا