ﻻ يوجد ملخص باللغة العربية
The constraints imposed by chiral symmetry on hadron correlation functions in nuclear medium are discussed. It is shown that these constraints imply a certain structure for the in-medium hadron correlators and lead to the cancelation of the order $rho m_pi$ term in the in-medium nucleon correlator. We also consider the effect of mixing of the chiral partners correlation functions arising from the interaction of nuclear pions with corresponding interpolating currents. It reflects the phenomena of partial restoration of chiral symmetry. The different scenarios of such restoration are briefly discussed.
The effective field theory of NN interactions in nuclear matter is considered. Due to the Pauli principle the effective NN amplitude is not affected by the shallow bound states. We show that the next-to-leading order terms in the chiral expansion of
Using two-nucleon and three-nucleon interactions derived in the framework of chiral perturbation theory (ChPT) with and without the explicit $Delta$ isobar contributions, we calculate the energy per particle of symmetric nuclear matter and pure neutr
Short range particle repulsion is rather important property of the hadronic and nuclear matter equations of state. We present a novel equation of state which is based on the virial expansion for the multicomponent mixtures with hard-core repulsion. I
The effective chiral theory of the in-medium NN interactions is considered. The shallow bound states, which complicate the effective field theory analysis in vacuum do not exist in matter. We show that the next-to-leading order terms in the chiral
The single-nucleon potential in hot nuclear matter is investigated in the framework of the Brueckner theory by adopting the realistic Argonne V18 or Nijmegen 93 two-body nucleon-nucleon interaction supplemented by a microscopic three-body force. The