ترغب بنشر مسار تعليمي؟ اضغط هنا

Proton Spin Structure in the Resonance Region

101   0   0.0 ( 0 )
 نشر من قبل Frank R. Wesselmann
 تاريخ النشر 2006
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We have examined the spin structure of the proton in the region of the nucleon resonances (1.085 GeV < W < 1.910 GeV) at an average four momentum transfer of Q^2 = 1.3 GeV^2. Using the Jefferson Lab polarized electron beam, a spectrometer, and a polarized solid target, we measured the asymmetries A_parallel and A_perp to high precision, and extracted the asymmetries A_1 and A_2, and the spin structure functions g_1 and g_2. We found a notably non-zero A_perp, significant contributions from higher-twist effects, and only weak support for polarized quark--hadron duality.



قيم البحث

اقرأ أيضاً

64 - Xu Cao , H. Lenske 2017
Compton scattering off the proton in the third resonance region is analyzed for the first time, owing to the full combined analysis of pion- and photo-induced reactions in a coupled-channel effective Lagrangian model with K-matrix approximation. Two isospin $I=3/2$ resonances $D_{33}(1700)$ and $F_{35}(1930)$ are found to be essential in the range of 1.6 - 1.8 GeV. The recent beam asymmetry data of Compton scattering from the GRAAL facility are used to determine the helicity couplings of these resonances, and strong constraints are coming also from $pi N$ and $KSigma$ photoproduction data. The possible spin and parity of new narrow resonances is discussed.
We report the measurement of the parity-violating asymmetry for the inelastic scattering of electrons from the proton, at $Q^2 = 0.082$ GeV$^2$ and $ W = 2.23$ GeV, above the resonance region. The result $A_{rm Inel} = - 13.5 pm 2.0 ({rm stat}) pm 3. 9 ({rm syst})$~ppm agrees with theoretical calculations, and helps to validate the modeling of the $gamma Z$ interference structure functions $F_1^{gamma Z}$ and $F_2^{gamma Z}$ used in those calculations, which are also used for determination of the two-boson exchange box diagram ($Box_{gamma Z}$) contribution to parity-violating elastic scattering measurements. A positive parity-violating asymmetry for inclusive $pi^-$ production was observed, as well as positive beam-normal single-spin asymmetry for scattered electrons and a negative beam-normal single-spin asymmetry for inclusive $pi^-$ production.
92 - X. Zheng , A. Deur , H. Kang 2021
Measuring the spin structure of nucleons (protons and neutrons) extensively tests our understanding of how nucleons arise from quarks and gluons, the fundamental building blocks of nuclear matter. The nucleon spin structure is typically probed in sca ttering experiments using polarized beams and polarized nucleon targets, and the results are compared with predictions from Quantum Chromodynamics directly or with effective theories that describe the strong nuclear force. Here we report on new proton spin structure measurements with significantly better precision and improved coverage than previous data at low momentum transfer squared between $0.012$ and $1.0$ GeV$^2$. This kinematic range provides unique tests of effective field theory predictions. Our results show that a complete description of the nucleon spin remains elusive. They call for further theoretical works that include the more fundamental lattice gauge method. Finally, our data agree with the Gerasimov-Drell-Hearn sum rule, a fundamental prediction of quantum field theory.
Cross-sections and recoil polarizations for the reactions gamma + p --> K^+ + Lambda and gamma + p --> K^+ + Sigma^0 have been measured with high statistics and with good angular coverage for center-of-mass energies between 1.6 and 2.3 GeV. In the K^ +Lambda channel we confirm a structure near W=1.9 GeV at backward kaon angles, but our data shows a more complex s- and u- channel resonance structure than previously seen. This structure is present at forward and backward angles but not central angles, and its position and width change with angle, indicating that more than one resonance is playing a role. Rising back-angle cross sections at higher energies and large positive polarization at backward angles are consistent with sizable s- or u-channel contributions. None of the model calculations we present can consistently explain these aspects of the data.
220 - X. Zheng , et al. 2004
We report on measurements of the neutron spin asymmetries $A_{1,2}^n$ and polarized structure functions $g_{1,2}^n$ at three kinematics in the deep inelastic region, with $x=0.33$, 0.47 and 0.60 and $Q^2=2.7$, 3.5 and 4.8 (GeV/c)$^2$, respectively. T hese measurements were performed using a 5.7 GeV longitudinally-polarized electron beam and a polarized $^3$He target. The results for $A_1^n$ and $g_1^n$ at $x=0.33$ are consistent with previous world data and, at the two higher $x$ points, have improved the precision of the world data by about an order of magnitude. The new $A_1^n$ data show a zero crossing around $x=0.47$ and the value at $x=0.60$ is significantly positive. These results agree with a next-to-leading order QCD analysis of previous world data. The trend of data at high $x$ agrees with constituent quark model predictions but disagrees with that from leading-order perturbative QCD (pQCD) assuming hadron helicity conservation. Results for $A_2^n$ and $g_2^n$ have a precision comparable to the best world data in this kinematic region. Combined with previous world data, the moment $d_2^n$ was evaluated and the new result has improved the precision of this quantity by about a factor of two. When combined with the world proton data, polarized quark distribution functions were extracted from the new $g_1^n/F_1^n$ values based on the quark parton model. While results for $Delta u/u$ agree well with predictions from various models, results for $Delta d/d$ disagree with the leading-order pQCD prediction when hadron helicity conservation is imposed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا