ﻻ يوجد ملخص باللغة العربية
To determine nonspherical angular momentum amplitudes in hadrons at long ranges (low Q^2), data were taken for the p(vec{e},ep)pi^0 reaction in the Delta region at Q^2=0.060 (GeV/c)^2 utilizing the magnetic spectrometers of the A1 Collaboration at MAMI. The results for the dominant transition magnetic dipole amplitude and the quadrupole to dipole ratios at W=1232 MeV are: M_{1+}^{3/2} = (40.33 +/- 0.63_{stat+syst} +/- 0.61_{model}) (10^{-3}/m_{pi^+}),Re(E_{1+}^{3/2}/M_{1+}^{3/2}) = (-2.28 +/- 0.29_{stat+syst} +/- 0.20_{model})%, and Re(S_{1+}^{3/2}/M_{1+}^{3/2}) = (-4.81 +/- 0.27_{stat+syst} +/- 0.26_{model})%. These disagree with predictions of constituent quark models but are in reasonable agreement with lattice calculations with non-linear (chiral) pion mass extrapolations, with chiral effective field theory, and with dynamical models with pion cloud effects. These results confirm the dominance, and general Q^2 variation, of the pionic contribution at large distances.
The determination of non-spherical angular momentum amplitudes in nucleons at long ranges (low Q^{2}), was accomplished through the $p(vec{e},ep)pi^0$ reaction in the Delta region at $Q^2=0.060$, 0.127, and 0.200 (GeV/c)^2 at the Mainz Microtron (MAM
The circular photon asymmetry for pi0 eta photoproduction on the proton was measured for the first time at the tagged photon facility of the MAMI C accelerator using the Crystal Ball/TAPS photon spectrometer. The experimental results are interpreted
The low $Q^2$ slopes of the the transition form factors provide a unique method to measure the sizes of the neutral pseudo-scalar mesons, since they do not have electromagnetic form factors. From the slope one obtains the axial transition RMS radius
The first data on target and beam-target asymmetries for the $gamma ptopi^0eta p$ reaction at photon energies from 1050 up to 1450 MeV are presented. The measurements were performed using the Crystal Ball and TAPS detector setup at the Glasgow tagged
We report new p$(vec{e},e^prime p)pi^circ$ measurements in the $Delta^{+}(1232)$ resonance at the low momentum transfer region utilizing the magnetic spectrometers of the A1 Collaboration at MAMI. The mesonic cloud dynamics are predicted to be domina