ﻻ يوجد ملخص باللغة العربية
Recent results on high transverse momentum (pT) hadron production in p+p, d+Au and Au+Au collisions at the Relativistic Heavy Ion Collider (RHIC) are reviewed. Comparison of the nuclear modification factors, $R_{dAu}(pT)$ and $R_{AA}(pT)$, demonstrates that the large suppression in central Au+Au collisions is due to strong final-state effects. Theoretical models which incorporate jet quenching via gluon Bremsstrahlung in the dense partonic medium that is expected in central Au+Au collisions at ultra-relativistic energies are shown to reproduce the shape and magnitude of the observed suppression over the range of collision energies so far studied at RHIC.
Measurements of inclusive spectra of hadrons at large transverse momentum over a broad range of energy in different collision systems have been performed with the PHENIX experiment at RHIC. The data allow to study the energy and system size dependenc
In this presentation, I discussed a) the charm total cross-section and its comparisons to measurements at other beam energies and pQCD calculations; b) the semileptonic decay of charmed hadrons and the sensitivity of non-photonic leptons to charm qua
Typically the materialization of high energetic transverse partons to hadronic jets is assumed to occur outside the reaction zone in a relativistic heavy ion collision. In contrast, a quantum mechanical estimate yields a time on the order of only a f
Large proton and antiproton enhancement with respect to pions has been observed at intermediate transverse momentum $p_T approx$ 2-5 GeV/$c$ in Au+Au collisions at RHIC. To investigate the possible source of this anomaly, the production of $phi$ meso
We report measurements of charmed hadron production from hadronic ($D^{0}rightarrow Kpi$) and semileptonic ($mu$ and $e$) decays in 200 GeV Au+Au collisions at RHIC. Analysis of the spectra indicates that charmed hadrons have a different radial flow