ترغب بنشر مسار تعليمي؟ اضغط هنا

Charmed hadron production at low transverse momentum in Au+Au collisions at RHIC

141   0   0.0 ( 0 )
 نشر من قبل Yifei Zhang
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English
 تأليف B. I. Abelev




اسأل ChatGPT حول البحث

We report measurements of charmed hadron production from hadronic ($D^{0}rightarrow Kpi$) and semileptonic ($mu$ and $e$) decays in 200 GeV Au+Au collisions at RHIC. Analysis of the spectra indicates that charmed hadrons have a different radial flow pattern from light or multi-strange hadrons. Charm cross sections at mid-rapidity are extracted by combining the three independent measurements, covering the transverse momentum range that contributes to $sim$90% of the integrated cross section. The cross sections scale with number of binary collisions of the initial nucleons, a signature of charm production exclusively at the initial impact of colliding heavy ions. The implications for charm quark interaction and thermalization in the strongly interacting matter are discussed.



قيم البحث

اقرأ أيضاً

Transverse momentum spectra of pions, kaons, protons and antiprotons from Au+Au collisions at sqrt(s_(NN)) = 62.4 GeV have been measured by the PHOBOS experiment at the Relativistic Heavy Ion Collider at Brookhaven National Laboratory. The identifica tion of particles relies on three different methods: low momentum particles stopping in the first detector layers; the specific energy loss (dE/dx) in the silicon Spectrometer, and Time-of-Flight measurement. These methods cover the transverse momentum ranges 0.03-0.2, 0.2-1.0 and 0.5-3.0 GeV/c, respectively. Baryons are found to have substantially harder transverse momentum spectra than mesons. The pT region in which the proton to pion ratio reaches unity in central Au+Au collisions at sqrt(s_(NN)) = 62.4 GeV fits into a smooth trend as a function of collision energy. At low transverse momenta, the spectra exhibit a significant deviation from transverse mass scaling, and when the observed particle yields at very low pT are compared to extrapolations from higher pT, no significant excess is found. By comparing our results to Au+Au collisions at sqrt(s_(NN)) = 200 GeV, we conclude that the net proton yield at midrapidity is proportional to the number of participant nucleons in the collision.
133 - Krzysztof Wozniak 2007
In the PHOBOS experiment, charged particles are measured in almost the full solid angle. This enables the study of fluctuations and correlations in the particle production over a very wide kinematic range. In this paper, we show results of a direct s earch for fluctuations identified by an unusual shape of the pseudorapidity distribution. In addition, we use analysis of correlations of the multiplicity in similar pseudorapidity bins, placed symmetrically in the forward and backward hemispheres, to test the hypothesis of production of particles in clusters.
We present transverse momentum distributions of charged hadrons produced in Au+Au collisions at sqrt(s_NN) = 200 GeV. The evolution of the spectra for transverse momenta p_T from 0.25 to 5GeV/c is studied as a function of collision centrality over a range from 65 to 344 participating nucleons. We find a significant change of the spectral shape between proton-antiproton and peripheral Au+Au collisions. Comparing peripheral to central Au+Au collisions, we find that the yields at the highest p_T exhibit approximate scaling with the number of participating nucleons, rather than scaling with the number of binary collisions.
We report the energy dependence of mid-rapidity (anti-)deuteron production in Au+Au collisions at $sqrt{s_text{NN}} = $7.7, 11.5, 14.5, 19.6, 27, 39, 62.4, and 200 GeV, measured by the STAR experiment at RHIC. The yield of deuterons is found to be we ll described by the thermal model. The collision energy, centrality, and transverse momentum dependence of the coalescence parameter $B_2$ are discussed. We find that the values of $B_2$ for anti-deuterons are systematically lower than those for deuterons, indicating that the correlation volume of anti-baryons is larger than that of baryons at $sqrt{s_text{NN}}$ from 19.6 to 39 GeV. In addition, values of $B_2$ are found to vary with collision energy and show a broad minimum around $sqrt{s_text{NN}}= $20 to 40 GeV, which might imply a change of the equation of state of the medium in these collisions.
274 - J. Adams , et al. 2003
We report high statistics measurements of inclusive charged hadron production in Au+Au and p+p collisions at sqrtsNN=200 GeV. A large, approximately constant hadron suppression is observed in central Au+Au collisions for $5ltpTlt12$ GeV/c. The collis ion energy dependence of the yields and the centrality and pT dependence of the suppression provide stringent constraints on theoretical models of suppression. Models incorporating initial-state gluon saturation or partonic energy loss in dense matter are largely consistent with observations. We observe no evidence of pT-dependent suppression, which may be expected from models incorporating jet attentuation in cold nuclear matter or scattering of fragmentation hadrons.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا