The time evolution of a class of completely integrable discrete Lotka-Volterra s ystem is shown not unique but have two different ways chosen randomly at every s tep of generation. This uncertainty is consistent with the existence of constant s of motion and disappears in both continuous time and ultra discrete limits.
This work is concerned with the existence of entire solutions of the diffusive Lotka-Volterra competition system begin{equation}label{eq:abstract} begin{cases} u_{t}= u_{xx} + u(1-u-av), & qquad xinmathbb{R} cr v_{t}= d v_{xx}+ rv(1-v-bu), & qquad
xinmathbb{R} end{cases} quad (1) end{equation} where $d,r,a$, and $b$ are positive constants with $a eq 1$ and $b eq 1$. We prove the existence of some entire solutions $(u(t,x),v(t,x))$ of $(1)$ corresponding to $(Phi_{c}(xi),0)$ at $t=-infty$ (where $xi=x-ct$ and $Phi_c$ is a traveling wave solution of the scalar Fisher-KPP defined by the first equation of $(1)$ when $a=0$). Moreover, we also describe the asymptotic behavior of these entire solutions as $tto+infty$. We prove existence of new entire solutions for both the weak and strong competition case. In the weak competition case, we prove the existence of a class of entire solutions that forms a 4-dimensional manifold.
In this letter, for the discrete parity-time-symmetric nonlocal nonlinear Schr{o}dinger equation, we construct the Darboux transformation, which provides an algebraic iterative algorithm to obtain a series of analytic solutions from a known one. To i
llustrate, the breathing-soliton solutions, periodic-wave solutions and localized rational soliton solutions are derived with the zero and plane-wave solutions as the seeds. The properties of those solutions are also discussed, and particularly the asymptotic analysis reveals all possible cases of the interaction between the discrete rational dark and antidark solitons.
Using the integrability of the sinh-Gordon equation, we demonstrate the spectral stability of its elliptic solutions. By constructing a Lyapunov functional using higher-order conserved quantities of the sinh-Gordon equation, we show that these ellipt
ic solutions are orbitally stable with respect to subharmonic perturbations of arbitrary period.
We study the dynamics of predator-prey systems where prey are confined to a single region of space and where predators move randomly according to a power-law (Levy) dispersal kernel. Site fidelity, an important feature of animal behaviour, is incorpo
rated in the model through a stochastic resetting dynamics of the predators to the prey patch. We solve in the long time limit the rate equations of Lotka-Volterra type that describe the evolution of the two species densities. Fixing the demographic parameters and the Levy exponent, the total population of predators can be maximized for a certain value of the resetting rate. This optimal value achieves a compromise between over-exploitation and under-utilization of the habitat. Similarly, at fixed resetting rate, there exists a Levy exponent which is optimal regarding predator abundance. These findings are supported by 2D stochastic simulations and show that the combined effects of diffusion and resetting can broadly extend the region of species coexistence in ecosystems facing resources scarcity.
Let the population of e.g. a country where some opinion struggle occurs be varying in time, according to Verhulst equation. Consider next some competition between opinions such as the dynamics be described by Lotka and Volterra equations. Two kinds o
f influences can be used, in such a model, for describing the dynamics of an agent opinion conversion: this can occur (i) either by means of mass communication tools, under some external field influence, or (ii) by means of direct interactions between agents. It results, among other features, that change(s) in environmental conditions can prevent the extinction of populations of followers of some ideology due to different kinds of resurrection effects. The tension arising in the country population is proposed to be measured by an appropriately defined scale index.