ﻻ يوجد ملخص باللغة العربية
We study the dynamics of predator-prey systems where prey are confined to a single region of space and where predators move randomly according to a power-law (Levy) dispersal kernel. Site fidelity, an important feature of animal behaviour, is incorporated in the model through a stochastic resetting dynamics of the predators to the prey patch. We solve in the long time limit the rate equations of Lotka-Volterra type that describe the evolution of the two species densities. Fixing the demographic parameters and the Levy exponent, the total population of predators can be maximized for a certain value of the resetting rate. This optimal value achieves a compromise between over-exploitation and under-utilization of the habitat. Similarly, at fixed resetting rate, there exists a Levy exponent which is optimal regarding predator abundance. These findings are supported by 2D stochastic simulations and show that the combined effects of diffusion and resetting can broadly extend the region of species coexistence in ecosystems facing resources scarcity.
Field theory tools are applied to analytically study fluctuation and correlation effects in spatially extended stochastic predator-prey systems. In the mean-field rate equation approximation, the classic Lotka-Volterra model is characterized by neutr
We study several lattice random walk models with stochastic resetting to previously visited sites which exhibit a phase transition between an anomalous diffusive regime and a localization regime where diffusion is suppressed. The localized phase sett
Stochastic processes offer a fundamentally different paradigm of dynamics than deterministic processes that students are most familiar with, the most prominent example of the latter being Newtons laws of motion. Here, we discuss in a pedagogical mann
We study the stochastic thermodynamics of resetting systems. Violation of microreversibility means that the well known derivations of fluctuations theorems break down for dynamics with resetting. Despite that we show that stochastic resetting systems
The model of binary aggregation with constant kernel is subjected to stochastic resetting: aggregates of any size explode into monomers at independent stochastic times. These resetting times are Poisson distributed, and the rate of the process is cal