ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Lower Garland of Certain Subgroup Lattices in Linear Groups

96   0   0.0 ( 0 )
 نشر من قبل Alexandre Panin
 تاريخ النشر 1999
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We describe here the lower garland of some lattices of intermediate subgroups in linear groups. The results are applied to the case of subgroup lattices in general and special linear groups over a class of rings, containing the group of rational points T of a maximal non-split torus in the corresponding algebraic group. It turns out that these garlands coincide with the interval of the whole lattice, consisting of subgroups between T and its normalizer.



قيم البحث

اقرأ أيضاً

121 - Rod Gow , Gary McGuire 2021
Let $F$ be any field. We give a short and elementary proof that any finite subgroup $G$ of $PGL(2,F)$ occurs as a Galois group over the function field $F(x)$. We also develop a theory of descent to subfields of $F$. This enables us to realize the aut omorphism groups of finite subgroups of $PGL(2,F)$ as Galois groups.
For a finite volume geodesic polyhedron P in hyperbolic 3-space, with the property that all interior angles between incident faces are integral submultiples of Pi, there is a naturally associated Coxeter group generated by reflections in the faces. F urthermore, this Coxeter group is a lattice inside the isometry group of hyperbolic 3-space, with fundamental domain the original polyhedron P. In this paper, we provide a procedure for computing the lower algebraic K-theory of the integral group ring of such Coxeter lattices in terms of the geometry of the polyhedron P. As an ingredient in the computation, we explicitly calculate some of the lower K-groups of the dihedral groups and the product of dihedral groups with the cyclic group of order two.
63 - Alexandre A. Panin 1999
A complete description of subgroups in the general linear group over a semilocal ring containing the group of diagonal matrices was obtained by Z.I.Borewicz and N.A.Vavilov. It is shown in the present paper that a similar description holds for the in termediate subgroups of the group of all automorphisms of the lattice of right submodules of a free finite rank R-module over a simple Artinian ring containing the group consisting of those automorphisms which leave invariant an appropriate sublattice.
180 - Natalia Iyudu 2020
We develop tools for classification of contraction algebras and apply these to solve the problem on classification up to isomorphism of 8 and 9 dimensional algebras corresponding to 3-fold flops. We prove that there is only one up to isomorphism cont raction algebra of dimension 8, and two algebras of dimension 9. The formulae for the dimension of algebra, depending on the type of the potential are obtained. In the second part of the paper we show that associated graded structure to brace and truss with appropriate descending ideal filtration is pre-Lie.
This paper is a continuation of our article (European J. Math., https://doi.org/10.1007/s40879-020-00419-8). The notion of a poor complex compact manifold was introduced there and the group $Aut(X)$ for a $P^1$-bundle over such a manifold was proven to be very Jordan. We call a group $G$ very Jordan if it contains a normal abelian subgroup $G_0$ such that the orders of finite subgroups of the quotient $G/G_0$ are bounded by a constant depending on $G$ only. In this paper we provide explicit examples of infinite families of poor manifolds of any complex dimension, namely simple tori of algebraic dimension zero. Then we consider a non-trivial holomorphic $P^1$-bundle $(X,p,Y)$ over a non-uniruled complex compact Kaehler manifold $Y$. We prove that $Aut(X)$ is very Jordan provided some additional conditions on the set of sections of $p$ are met. Applications to $P^1$-bundles over non-algebraic complex tori are given.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا