ترغب بنشر مسار تعليمي؟ اضغط هنا

A Note on the Arrangement of Subgroups in the Automorphism Groups of Submodule Lattices of Free Modules

64   0   0.0 ( 0 )
 نشر من قبل Alexandre Panin
 تاريخ النشر 1999
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

A complete description of subgroups in the general linear group over a semilocal ring containing the group of diagonal matrices was obtained by Z.I.Borewicz and N.A.Vavilov. It is shown in the present paper that a similar description holds for the intermediate subgroups of the group of all automorphisms of the lattice of right submodules of a free finite rank R-module over a simple Artinian ring containing the group consisting of those automorphisms which leave invariant an appropriate sublattice.



قيم البحث

اقرأ أيضاً

318 - Andrew Putman 2021
A beautifully simple free generating set for the commutator subgroup of a free group was constructed by Tomaszewski. We give a new geometric proof of his theorem, and show how to give a similar free generating set for the commutator subgroup of a sur face group. We also give a simple representation-theoretic description of the structure of the abelianizations of these commutator subgroups and calculate their homology.
If $G$ is a free product of finite groups, let $Sigma Aut_1(G)$ denote all (necessarily symmetric) automorphisms of $G$ that do not permute factors in the free product. We show that a McCullough-Miller [D. McCullough and A. Miller, {em Symmetric Auto morphisms of Free Products}, Mem. Amer. Math. Soc. 122 (1996), no. 582] and Guti{e}rrez-Krsti{c} [M. Guti{e}rrez and S. Krsti{c}, {em Normal forms for the group of basis-conjugating automorphisms of a free group}, International Journal of Algebra and Computation 8 (1998) 631-669] derived (also see Bogley-Krsti{c} [W. Bogley and S. Krsti{c}, {em String groups and other subgroups of $Aut(F_n)$}, preprint] space of pointed trees is an $underline{E} Sigma Aut_1(G)$-space for these groups.
155 - Andrew Putman 2009
For some $g geq 3$, let $Gamma$ be a finite index subgroup of the mapping class group of a genus $g$ surface (possibly with boundary components and punctures). An old conjecture of Ivanov says that the abelianization of $Gamma$ should be finite. In t his note, we prove two theorems supporting this conjecture. For the first, let $T_x$ denote the Dehn twist about a simple closed curve $x$. For some $n geq 1$, we have $T_x^n in Gamma$. We prove that $T_x^n$ is torsion in the abelianization of $Gamma$. Our second result shows that the abelianization of $Gamma$ is finite if $Gamma$ contains a large chunk (in a certain technical sense) of the Johnson kernel, that is, the subgroup of the mapping class group generated by twists about separating curves. This generalizes work of Hain and Boggi.
The prime graph question asks whether the Gruenberg-Kegel graph of an integral group ring $mathbb Z G$ , i.e. the prime graph of the normalised unit group of $mathbb Z G$ coincides with that one of the group $G$. In this note we prove for finite grou ps $G$ a reduction of the prime graph question to almost simple groups. We apply this reduction to finite groups $G$ whose order is divisible by at most three primes and show that the Gruenberg - Kegel graph of such groups coincides with the prime graph of $G$.
139 - Zsolt Balogh , Victor Bovdi 2019
Let V_* be the normalized unitary subgroup of the modular group algebra FG of a finite p-group G over a finite field F with the classical involution *. We investigate the isomorphism problem for the group V_*, that asks when the group V_* is determin ed by its group algebra FG. We confirm it for classes of finite abelian p-groups, 2-groups of maximal class and non-abelian 2-groups of order at most 16.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا