ﻻ يوجد ملخص باللغة العربية
We study central hyperplane arrangements with integral coefficients modulo positive integers $q$. We prove that the cardinality of the complement of the hyperplanes is a quasi-polynomial in two ways, first via the theory of elementary divisors and then via the theory of the Ehrhart quasi-polynomials. This result is useful for determining the characteristic polynomial of the corresponding real arrangement. With the former approach, we also prove that intersection lattices modulo $q$ are periodic except for a finite number of $q$s.
An integral coefficient matrix determines an integral arrangement of hyperplanes in R^m. After modulo q reduction, the same matrix determines an arrangement A_q of hyperplanes in Z^m. In the special case of central arrangements, Kamiya, Takemura and
We introduce a new algorithm for enumerating chambers of hyperplane arrangements which exploits their underlying symmetry groups. Our algorithm counts the chambers of an arrangement as a byproduct of computing its characteristic polynomial. We showca
We study the combinatorics of hyperplane arrangements over arbitrary fields. Specifically, we determine in which situation an arrangement and its reduction modulo a prime number have isomorphic lattices via the use of minimal strong $sigma$-Grobner b
In this article, we study the weak and strong Lefschetz properties, and the related notion of almost revlex ideal, in the non-Artinian case, proving that several results known in the Artinian case hold also in this more general setting. We then apply
There is a trinity relationship between hyperplane arrangements, matroids and convex polytopes. We expand it as resolving the complexity issue expected by Mnevs universality theorem and conduct combinatorializing so the theory over fields becomes rea