ﻻ يوجد ملخص باللغة العربية
We use Heegaard splittings to give a criterion for a tunnel number one knot manifold to be non-fibered and to have large cyclic covers. We also show that such a knot manifold (satisfying the criterion) admits infinitely many virtually Haken Dehn fillings. Using a computer, we apply this criterion to the 2 generator, non-fibered knot manifolds in the cusped Snappea census. For each such manifold M, we compute a number c(M), such that, for any n>c(M), the n-fold cyclic cover of M is large.
Given a 3-manifold M containing an incompressible surface Q, we obtain an inequality relating the Heegaard genus of M and the Heegaard genera of the components of M - Q. Here the sum of the genera of the components of M - Q is bounded above by a line
We construct a sequence of pairs of 3-manifolds each with torus boundary and with the following two properties: 1) For the result of a carefully chosen glueing of the nth pair of 3-manifolds along their boundary tori, the ratio of the genus of the
Let M be a totally orientable graph manifold with characteristic submanifold T and let M = V cup_S W be a Heegaard splitting. We prove that S is standard. In particular, S is the amalgamation of strongly irreducible Heegaard splittings. The splitting
Let $f$ be the gluing map of a Heegaard splitting of a 3-manifold $W$. The goal of this paper is to determine the information about $W$ contained in the image of $f$ under the symplectic representation of the mapping class group. We prove three main
We give a short proof of Scharlemanns Strong Haken Theorem for closed $3$-manifolds (and manifolds with spherical boundary). As an application, we also show that given a decomposing sphere $R$ for a $3$-manifold $M$ that splits off an $S^2 times S^1$