ترغب بنشر مسار تعليمي؟ اضغط هنا

Heegaard splittings of graph manifolds

163   0   0.0 ( 0 )
 نشر من قبل Jennifer Schultens
 تاريخ النشر 2004
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let M be a totally orientable graph manifold with characteristic submanifold T and let M = V cup_S W be a Heegaard splitting. We prove that S is standard. In particular, S is the amalgamation of strongly irreducible Heegaard splittings. The splitting surfaces S_i of these strongly irreducible Heegaard splittings have the property that for each vertex manifold N of M, S_i cap N is either horizontal, pseudohorizontal, vertical or pseudovertical.



قيم البحث

اقرأ أيضاً

We construct a sequence of pairs of 3-manifolds each with torus boundary and with the following two properties: 1) For the result of a carefully chosen glueing of the nth pair of 3-manifolds along their boundary tori, the ratio of the genus of the resulting 3-manifold to the sum of the genera of the pair of 3-manifolds is less than 1/2. 2) The result of amalgamating certain unstabilized Heegaard splittings of the pair of 3-manifolds to form a Heegaard splitting of the resulting 3-manifold produces a stabilized Heegaard splitting that can be destabilized successively n times.
Let $f$ be the gluing map of a Heegaard splitting of a 3-manifold $W$. The goal of this paper is to determine the information about $W$ contained in the image of $f$ under the symplectic representation of the mapping class group. We prove three main results. First, we show that the first homology group of the three manifold together with Seiferts linking form provides a complete set of stable invariants. Second, we give a complete, computable set of invariants for these linking forms. Third, we show that a slight augmentation of Birmans determinantal invariant for a Heegaard splitting gives a complete set of unstable invariants.
We use Heegaard splittings to give a criterion for a tunnel number one knot manifold to be non-fibered and to have large cyclic covers. We also show that such a knot manifold (satisfying the criterion) admits infinitely many virtually Haken Dehn fill ings. Using a computer, we apply this criterion to the 2 generator, non-fibered knot manifolds in the cusped Snappea census. For each such manifold M, we compute a number c(M), such that, for any n>c(M), the n-fold cyclic cover of M is large.
171 - Jennifer Schultens 2001
Given a 3-manifold M containing an incompressible surface Q, we obtain an inequality relating the Heegaard genus of M and the Heegaard genera of the components of M - Q. Here the sum of the genera of the components of M - Q is bounded above by a line ar expression in terms of the genus of M, the Euler characteristic of Q and the number of parallelism classes of essential annuli for which representatives can be simultaneously imbedded in the components of M - Q.
We compute the involutive Heegaard Floer homology of the family of three-manifolds obtained by plumbings along almost-rational graphs. (This includes all Seifert fibered homology spheres.) We also study the involutive Heegaard Floer homology of conne cted sums of such three-manifolds, and explicitly determine the involutive correction terms in the case that all of the summands have the same orientation. Using these calculations, we give a new proof of the existence of an infinite-rank subgroup in the three-dimensional homology cobordism group.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا