ترغب بنشر مسار تعليمي؟ اضغط هنا

Second-order operators with degenerate coefficients

175   0   0.0 ( 0 )
 نشر من قبل Derek Robinson
 تاريخ النشر 2006
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider properties of second-order operators $H = -sum^d_{i,j=1} partial_i , c_{ij} , partial_j$ on $Ri^d$ with bounded real symmetric measurable coefficients. We assume that $C = (c_{ij}) geq 0$ almost everywhere, but allow for the possibility that $C$ is singular. We associate with $H$ a canonical self-adjoint viscosity operator $H_0$ and examine properties of the viscosity semigroup $S^{(0)}$ generated by $H_0$. The semigroup extends to a positive contraction semigroup on the $L_p$-spaces with $p in [1,infty]$. We establish that it conserves probability, satisfies $L_2$~off-diagonal bounds and that the wave equation associated with $H_0$ has finite speed of propagation. Nevertheless $S^{(0)}$ is not always strictly positive because separation of the system can occur even for subelliptic operators. This demonstrates that subelliptic semigroups are not ergodic in general and their kernels are neither strictly positive nor Holder continuous. In particular one can construct examples for which both upper and lower Gaussian bounds fail even with coefficients in $C^{2-varepsilon}(Ri^d)$ with $varepsilon > 0$.



قيم البحث

اقرأ أيضاً

158 - N.V. Krylov , E. Priola 2008
We consider a second-order parabolic equation in $bR^{d+1}$ with possibly unbounded lower order coefficients. All coefficients are assumed to be only measurable in the time variable and locally Holder continuous in the space variables. We show that g lobal Schauder estimates hold even in this case. The proof introduces a new localization procedure. Our results show that the constant appearing in the classical Schauder estimates is in fact independent of the $L_{infty}$-norms of the lower order coefficients. We also give a proof of uniqueness which is of independent interest even in the case of bounded coefficients.
162 - N.V. Krylov 2008
The solvability in $W^{2}_{p}(bR^{d})$ spaces is proved for second-order elliptic equations with coefficients which are measurable in one direction and VMO in the orthogonal directions in each small ball with the direction depending on the ball. This generalizes to a very large extent the case of equations with continuous or VMO coefficients.
68 - Seick Kim , Longjuan Xu 2020
We construct Greens functions for second order parabolic operators of the form $Pu=partial_t u-{rm div}({bf A} abla u+ boldsymbol{b}u)+ boldsymbol{c} cdot abla u+du$ in $(-infty, infty) times Omega$, where $Omega$ is an open connected set in $mathb b{R}^n$. It is not necessary that $Omega$ to be bounded and $Omega = mathbb{R}^n$ is not excluded. We assume that the leading coefficients $bf A$ are bounded and measurable and the lower order coefficients $boldsymbol{b}$, $boldsymbol{c}$, and $d$ belong to critical mixed norm Lebesgue spaces and satisfy the conditions $d-{rm div} boldsymbol{b} ge 0$ and ${rm div}(boldsymbol{b}-boldsymbol{c}) ge 0$. We show that the Greens function has the Gaussian bound in the entire $(-infty, infty) times Omega$.
In this paper we characterize global regularity in the sense of Shubin of twisted partial differential operators of second order in dimension $2$. These operators form a class containing the twisted Laplacian, and in bi-unique correspondence with sec ond order ordinary differential operators with polynomial coefficients and symbol of degree $2$. This correspondence is established by a transformation of Wigner type. In this way the global regularity of twisted partial differential operators turns out to be equivalent to global regularity and injectivity of the corresponding ordinary differential operators, which can be completely characterized in terms of the asymptotic behavior of the Weyl symbol. In conclusion we observe that we have obtained a new class of globally regular partial differential operators which is disjoint from the class of hypo-elliptic operators in the sense of Shubin.
We consider a boundary value problem in a bounded domain involving a degenerate operator of the form $$L(u)=-textrm{div} (a(x) abla u)$$ and a suitable nonlinearity $f$. The function $a$ vanishes on smooth 1-codimensional submanifolds of $Omega$ wher e it is not allowed to be $C^{2}$. By using weighted Sobolev spaces we are still able to find existence of solutions which vanish, in the trace sense, on the set where $a$ vanishes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا