ﻻ يوجد ملخص باللغة العربية
General theory of elliptic hypergeometric series and integrals is outlined. Main attention is paid to the examples obeying properties of the classical special functions. In particular, an elliptic analogue of the Gauss hypergeometric function and some of its properties are described. Present review is based on authors habilitation thesis [Spi7] containing a more detailed account of the subject.
This is a brief overview of the status of the theory of elliptic hypergeometric functions to the end of 2012 written as a complementary chapter to the Russian edition of the book by G.E. Andrews, R. Askey, and R. Roy, Special Functions, Encycl. of Math. Appl. 71, Cambridge Univ. Press, 1999.
The Cholesky factorization of the moment matrix is applied to discrete orthogonal polynomials on the homogeneous lattice. In particular, semiclassical discrete orthogonal polynomials, which are built in terms of a discrete Pearson equation, are studi
We propose a class of Pade interpolation problems whose solutions are expressible in terms of determinants of hypergeometric series.
A special singular limit $omega_1/omega_2to 1$ is considered for the Faddeev modular quantum dilogarithm (hyperbolic gamma function) and corresponding hyperbolic integrals. It brings a new class of hypergeometric identities associated with bilateral
In cite{GUW} we introduced a class of semi-classical functions of isotropic type, starting with a model case and applying Fourier integral operators associated with canonical transformations. These functions are a substantial generalization of the os