ترغب بنشر مسار تعليمي؟ اضغط هنا

Elliptic hypergeometric functions

403   0   0.0 ( 0 )
 نشر من قبل Vyacheslav P. Spiridonov
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English
 تأليف V.P. Spiridonov




اسأل ChatGPT حول البحث

This is a brief overview of the status of the theory of elliptic hypergeometric functions to the end of 2012 written as a complementary chapter to the Russian edition of the book by G.E. Andrews, R. Askey, and R. Roy, Special Functions, Encycl. of Math. Appl. 71, Cambridge Univ. Press, 1999.



قيم البحث

اقرأ أيضاً

101 - V.P. Spiridonov 2005
General theory of elliptic hypergeometric series and integrals is outlined. Main attention is paid to the examples obeying properties of the classical special functions. In particular, an elliptic analogue of the Gauss hypergeometric function and som e of its properties are described. Present review is based on authors habilitation thesis [Spi7] containing a more detailed account of the subject.
197 - Raimundas Vidunas 2011
Gauss hypergeometric functions with a dihedral monodromy group can be expressed as elementary functions, since their hypergeometric equations can be transformed to Fuchsian equations with cyclic monodromy groups by a quadratic change of the argument variable. The paper presents general elementary expressions of these dihedral hypergeometric functions, involving finite bivariate sums expressible as terminating Appells F2 or F3 series. Additionally, trigonometric expressions for the dihedral functions are presented, and degenerate cases (logarithmic, or with the monodromy group Z/2Z) are considered.
109 - V. P. Spiridonov 2019
We give a brief account of the key properties of elliptic hypergeometric integrals -- a relatively recently discovered top class of transcendental special functions of hypergeometric type. In particular, we describe an elliptic generalization of Eule rs and Selbergs beta integrals, elliptic analogue of the Euler-Gauss hypergeometric function and some multivariable elliptic hypergeometric functions on root systems. The elliptic Fourier transformation and corresponding integral Bailey lemma technique is outlined together with a connection to the star-triangle relation and Coxeter relations for a permutation group. We review also the interpretation of elliptic hypergeometric integrals as superconformal indices of four dimensional supersymmetric quantum field theories and corresponding applications to Seiberg type dualities.
The aim of this work is to demonstrate various an interesting recursion formulas, differential and integral operators, integration formulas, and infinite summation for each of Horns hypergeometric functions $mathrm{H}_{1}$, $mathrm{H}_{2}$, $mathrm{H }_{3}$, $mathrm{H}_{4}$, $mathrm{H}_{5}$, $mathrm{H}_{6}$ and $mathrm{H}_{7}$ by the contiguous relations of Horns hypergeometric series. Some interesting different cases of our main consequences are additionally constructed.
164 - Eric M. Rains 2011
We construct a family of second-order linear difference equations parametrized by the hypergeometric solution of the elliptic Painleve equation (or higher-order analogues), and admitting a large family of monodromy-preserving deformations. The soluti ons are certain semiclassical biorthogonal functions (and their Cauchy transforms), biorthogonal with respect to higher-order analogues of Spiridonovs elliptic beta integral.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا