ﻻ يوجد ملخص باللغة العربية
Following a problem posed by Lovasz in 1969, it is believed that every connected vertex-transitive graph has a Hamilton path. This is shown here to be true for cubic Cayley graphs arising from groups having a $(2,s,3)$-presentation, that is, for groups $G=la a,b| a^2=1, b^s=1, (ab)^3=1, etc. ra$ generated by an involution $a$ and an element $b$ of order $sgeq3$ such that their product $ab$ has order 3. More precisely, it is shown that the Cayley graph $X=Cay(G,{a,b,b^{-1}})$ has a Hamilton cycle when $|G|$ (and thus $s$) is congruent to 2 modulo 4, and has a long cycle missing only two vertices (and thus necessarily a Hamilton path) when $|G|$ is congruent to 0 modulo 4.
A graph is said to be {em vertex-transitive non-Cayley} if its full automorphism group acts transitively on its vertices and contains no subgroups acting regularly on its vertices. In this paper, a complete classification of cubic vertex-transitive n
In this paper we are interested in the asymptotic enumeration of Cayley graphs. It has previously been shown that almost every Cayley digraph has the smallest possible automorphism group: that is, it is a digraphical regular representation (DRR). In
We prove an upper bound on the number of pairwise strongly cospectral vertices in a normal Cayley graph, in terms of the multiplicities of its eigenvalues. We use this to determine an explicit bound in Cayley graphs of $mathbb{Z}_2^d$ and $mathbb{Z}_
In 2011, Fang et al. in (J. Combin. Theory A 118 (2011) 1039-1051) posed the following problem: Classify non-normal locally primitive Cayley graphs of finite simple groups of valency $d$, where either $dleq 20$ or $d$ is a prime number. The only case
In this paper we study finite groups which have Cayley isomorphism property with respect to Cayley maps, CIM-groups for a brief. We show that the structure of the CIM-groups is very restricted. It is described in Theorem~ref{111015a} where a short li