ﻻ يوجد ملخص باللغة العربية
We prove an upper bound on the number of pairwise strongly cospectral vertices in a normal Cayley graph, in terms of the multiplicities of its eigenvalues. We use this to determine an explicit bound in Cayley graphs of $mathbb{Z}_2^d$ and $mathbb{Z}_4^d$. We also provide some infinite families of Cayley graphs of $mathbb{Z}_2^d$ with a set of four pairwise strongly cospectral vertices and show that such graphs exist in every dimension.
We generalize Schwenks result that almost all trees contain any given limb to trees with positive integer vertex weights. The concept of characteristic polynomial is extended to such weighted trees and we prove almost all weighted trees have a cospec
Following a problem posed by Lovasz in 1969, it is believed that every connected vertex-transitive graph has a Hamilton path. This is shown here to be true for cubic Cayley graphs arising from groups having a $(2,s,3)$-presentation, that is, for grou
In this paper, we construct an infinite family of normal Cayley graphs, which are $2$-distance-transitive but neither distance-transitive nor $2$-arc-transitive. This answers a question raised by Chen, Jin and Li in 2019 and corrects a claim in a literature given by Pan, Huang and Liu in 2015.
In this paper we are interested in the asymptotic enumeration of Cayley graphs. It has previously been shown that almost every Cayley digraph has the smallest possible automorphism group: that is, it is a digraphical regular representation (DRR). In
A Cayley (di)graph $Cay(G,S)$ of a group $G$ with respect to $S$ is said to be normal if the right regular representation of $G$ is normal in the automorphism group of $Cay(G,S)$, and is called a CI-(di)graph if there is $alphain Aut(G)$ such that $S