ترغب بنشر مسار تعليمي؟ اضغط هنا

Stanley-Reisner rings and the radicals of lattice ideals

117   0   0.0 ( 0 )
 نشر من قبل Apostolos Thoma
 تاريخ النشر 2003
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this article we associate to every lattice ideal $I_{L,rho}subset K[x_1,..., x_m]$ a cone $sigma $ and a graph $G_{sigma}$ with vertices the minimal generators of the Stanley-Reisner ideal of $sigma $. To every polynomial $F$ we assign a subgraph $G_{sigma}(F)$ of the graph $G_{sigma}$. Every expression of the radical of $I_{L,rho}$, as a radical of an ideal generated by some polynomials $F_1,..., F_s$ gives a spanning subgraph of $G_{sigma}$, the $cup_{i=1}^s G_{sigma}(F_i)$. This result provides a lower bound for the minimal number of generators of $I_{L,rho}$ and therefore improves the generalized Krulls principal ideal theorem for lattice ideals. But mainly it provides lower bounds for the binomial arithmetical rank and the $A$-homogeneous arithmetical rank of a lattice ideal. Finally we show, by a family of examples, that the bounds given are sharp.



قيم البحث

اقرأ أيضاً

135 - Nguyen Cong Minh , Thanh Vu 2021
Let $Delta$ be a one-dimensional simplicial complex. Let $I_Delta$ be the Stanley-Reisner ideal of $Delta$. We prove that for all $s ge 1$ and all intermediate ideals $J$ generated by $I_Delta^s$ and some minimal generators of $I_Delta^{(s)}$, we hav e $${rm reg} J = {rm reg} I_Delta^s = {rm reg} I_Delta^{(s)}.$$
The goal of the present paper is the study of some algebraic invariants of Stanley-Reisner rings of Cohen-Macaulay simplicial complexes of dimension $d - 1$. We prove that the inequality $d leq mathrm{reg}(Delta) cdot mathrm{type}(Delta)$ holds for a ny $(d-1)$-dimensional Cohen-Macaulay simplicial complex $Delta$ satisfying $Delta=mathrm{core}(Delta)$, where $mathrm{reg}(Delta)$ (resp. $mathrm{type}(Delta)$) denotes the Castelnuovo-Mumford regularity (resp. Cohen-Macaulay type) of the Stanley-Reisner ring $Bbbk[Delta]$. Moreover, for any given integers $d,r,t$ satisfying $r,t geq 2$ and $r leq d leq rt$, we construct a Cohen-Macaulay simplicial complex $Delta(G)$ as an independent complex of a graph $G$ such that $dim(Delta(G))=d-1$, $mathrm{reg}(Delta(G))=r$ and $mathrm{type}(Delta(G))=t$.
91 - Connor Sawaske 2017
We consider simplicial complexes admitting a free action by an abelian group. Specifically, we establish a refinement of the classic result of Hochster describing the local cohomology modules of the associated Stanley--Reisner ring, demonstrating tha t the topological structure of the free action extends to the algebraic setting. If the complex in question is also Buchsbaum, this new description allows for a specialization of Schenzels calculation of the Hilbert series of some of the rings Artinian reductions. In further application, we generalize to the Buchsbaum case the results of Stanley and Adin that provide a lower bound on the $h$-vector of a Cohen-Macaulay complex admitting a free action by a cyclic group of prime order.
Building on previous work by the same authors, we show that certain ideals defining Gorenstein rings have expected resurgence, and thus satisfy the stable Harbourne Conjecture. In prime characteristic, we can take any radical ideal defining a Gorenst ein ring in a regular ring, provided its symbolic powers are given by saturations with the maximal ideal. While this property is not suitable for reduction to characteristic $p$, we show that a similar result holds in equicharacteristic $0$ under the additional hypothesis that the symbolic Rees algebra of $I$ is noetherian.
In this paper we completely characterize lattice ideals that are complete intersections or equivalently complete intersections finitely generated semigroups of $bz^noplus T$ with no invertible elements, where $T$ is a finite abelian group. We also ch aracterize the lattice ideals that are set-theoretic complete intersections on binomials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا