ﻻ يوجد ملخص باللغة العربية
We classify quadruples $(M,g,m,tau)$ in which $(M,g)$ is a compact Kahler manifold of complex dimension $m>2$ with a nonconstant function $tau$ on $M$ such that the conformally related metric $g/tau^2$, defined wherever $tau e 0$, is Einstein. It turns out that $M$ then is the total space of a holomorphic $CP^1$ bundle over a compact Kahler-Einstein manifold $(N,h)$. The quadruples in question constitute four disjoint families: one, well-known, with Kahler metrics $g$ that are locally reducible; a second, discovered by Berard Bergery (1982), and having $tau e 0$ everywhere; a third one, related to the second by a form of analytic continuation, and analogous to some known Kahler surface metrics; and a fourth family, present only in odd complex dimensions $mge 9$. Our classification uses a {it moduli curve}, which is a subset $mathcal{C}$, depending on $m$, of an algebraic curve in $R^2$. A point $(u,v)$ in $mathcal{C}$ is naturally associated with any $(M,g,m,tau)$ having all of the above properties except for compactness of $M$, replaced by a weaker requirement of ``vertical compactness. One may in turn reconstruct $M,g$ and $tau$ from this $(u,v)$ coupled with some other data, among them a Kahler-Einstein base $(N,h)$ for the $CP^1$ bundle $M$. The points $(u,v)$ arising in this way from $(M,g,m,tau)$ with compact $M$ form a countably infinite subset of $mathcal{C}$.
A special Kahler-Ricci potential on a Kahler manifold is any nonconstant $C^infty$ function $tau$ such that $J( ablatau)$ is a Killing vector field and, at every point with $dtau e 0$, all nonzero tangent vectors orthogonal to $ ablatau$ and $J( abla
In this paper, we establish a compactness result for a class of conformally compact Einstein metrics defined on manifolds of dimension $dge 4$. As an application, we derive the global uniqueness of a class of conformally compact Einstein metric defin
We show that locally conformally flat quasi-Einstein manifolds are globally conformally equivalent to a space form or locally isometric to a $pp$-wave or a warped product.
The requirement that a (non-Einstein) Kahler metric in any given complex dimension $m>2$ be almost-everywhere conformally Einstein turns out to be much more restrictive, even locally, than in the case of complex surfaces. The local biholomorphic-isom
In this note, we study the dynamics and associated zeta functions of conformally compact manifolds with variable negative sectional curvatures. We begin with a discussion of a larger class of manifolds known as convex co-compact manifolds with variab