ترغب بنشر مسار تعليمي؟ اضغط هنا

Special Kahler-Ricci potentials on compact Kahler manifolds

76   0   0.0 ( 0 )
 نشر من قبل Gideon Maschler
 تاريخ النشر 2002
  مجال البحث
والبحث باللغة English
 تأليف A. Derdzinski




اسأل ChatGPT حول البحث

A special Kahler-Ricci potential on a Kahler manifold is any nonconstant $C^infty$ function $tau$ such that $J( ablatau)$ is a Killing vector field and, at every point with $dtau e 0$, all nonzero tangent vectors orthogonal to $ ablatau$ and $J( ablatau)$ are eigenvectors of both $ abla dtau$ and the Ricci tensor. For instance, this is always the case if $tau$ is a nonconstant $C^infty$ function on a Kahler manifold $(M,g)$ of complex dimension $m>2$ and the metric $tilde g=g/tau^2$, defined wherever $tau e 0$, is Einstein. (When such $tau$ exists, $(M,g)$ may be called {it almost-everywhere conformally Einstein}.) We provide a complete classification of compact Kahler manifolds with special Kahler-Ricci potentials and use it to prove a structure theorem for compact Kahler manifolds of any complex dimension $m>2$ which are almost-everywhere conformally Einstein.



قيم البحث

اقرأ أيضاً

In a paper by Angella, Otal, Ugarte, and Villacampa, the authors conjectured that on a compact Hermitian manifold, if a Gauduchon connection other than Chern or Strominger is Kahler-like, then the Hermitian metric must be Kahler. They also conjecture d that if two Gauduchon connections are both Kahler-like, then the metric must be Kahler. In this paper, we discuss some partial answers to the first conjecture, and give a proof to the second conjecture. In the process, we discovered an interesting `duality phenomenon amongst Gauduchon connections, which seems to be intimately tied to the question, though we do not know if there is any underlying reason for that from physics.
145 - A. Derdzinski 2003
We classify quadruples $(M,g,m,tau)$ in which $(M,g)$ is a compact Kahler manifold of complex dimension $m>2$ with a nonconstant function $tau$ on $M$ such that the conformally related metric $g/tau^2$, defined wherever $tau e 0$, is Einstein. It tur ns out that $M$ then is the total space of a holomorphic $CP^1$ bundle over a compact Kahler-Einstein manifold $(N,h)$. The quadruples in question constitute four disjoint families: one, well-known, with Kahler metrics $g$ that are locally reducible; a second, discovered by Berard Bergery (1982), and having $tau e 0$ everywhere; a third one, related to the second by a form of analytic continuation, and analogous to some known Kahler surface metrics; and a fourth family, present only in odd complex dimensions $mge 9$. Our classification uses a {it moduli curve}, which is a subset $mathcal{C}$, depending on $m$, of an algebraic curve in $R^2$. A point $(u,v)$ in $mathcal{C}$ is naturally associated with any $(M,g,m,tau)$ having all of the above properties except for compactness of $M$, replaced by a weaker requirement of ``vertical compactness. One may in turn reconstruct $M,g$ and $tau$ from this $(u,v)$ coupled with some other data, among them a Kahler-Einstein base $(N,h)$ for the $CP^1$ bundle $M$. The points $(u,v)$ arising in this way from $(M,g,m,tau)$ with compact $M$ form a countably infinite subset of $mathcal{C}$.
We study the generalized Kahler-Ricci flow with initial data of symplectic type, and show that this condition is preserved. In the case of a Fano background with toric symmetry, we establish global existence of the normalized flow. We derive an exten sion of Perelmans entropy functional to this setting, which yields convergence of nonsingular solutions at infinity. Furthermore, we derive an extension of Mabuchis $K$-energy to this setting, which yields weak convergence of the flow.
We prove a uniform diameter bound for long time solutions of the normalized Kahler-Ricci flow on an $n$-dimensional projective manifold $X$ with semi-ample canonical bundle under the assumption that the Ricci curvature is uniformly bounded for all ti me in a fixed domain containing a fibre of $X$ over its canonical model $X_{can}$. This assumption on the Ricci curvature always holds when the Kodaira dimension of $X$ is $n$, $n-1$ or when the general fibre of $X$ over its canonical model is a complex torus. In particular, the normalized Kahler-Ricci flow converges in Gromov-Hausdorff topolopy to its canonical model when $X$ has Kodaira dimension $1$ with $K_X$ being semi-ample and the general fibre of $X$ over its canonical model being a complex torus. We also prove the Gromov-Hausdorff limit of collapsing Ricci-flat Kahler metrics on a holomorphically fibred Calabi-Yau manifold is unique and is homeomorphic to the metric completion of the corresponding twisted Kahler-Einstein metric on the regular part of its base.
172 - Nigel Hitchin 2019
We describe the Special Kahler structure on the base of the so-called Hitchin system in terms of the geometry of the space of spectral curves. It yields a simple formula for the Kahler potential. This extends to the case of a singular spectral curve and we show that this defines the Special Kahler structure on certain natural integrable subsystems. Examples include the extreme case where the metric is flat.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا