ﻻ يوجد ملخص باللغة العربية
We define even dimensional quantum spheres Sigma_q^2n that generalize to higher dimension the standard quantum two-sphere of Podles and the four-sphere Sigma_q^4 obtained in the quantization of the Hopf bundle. The construction relies on an iterated Poisson double suspension of the standard Podles two-sphere. The Poisson spheres that we get have the same symplectic foliation consisting of a degenerate point and a symplectic plane and, after quantization, have the same C^*-algebraic completion. We investigate their K-homology and K-theory by introducing Fredholm modules and projectors.
The formality theorem for Hochschild chains of the algebra of functions on a smooth manifold gives us a version of the trace density map from the zeroth Hochschild homology of a deformation quantization algebra to the zeroth Poisson homology. We prop
We consider a smooth Poisson affine variety with the trivial canonical bundle over complex numbers. For such a variety the deformation quantization algebra A_h enjoys the conditions of the Van den Bergh duality theorem and the corresponding dualizing
Proofs of Tsygans formality conjectures for chains would unlock important algebraic tools which might lead to new generalizations of the Atiyah-Patodi-Singer index theorem and the Riemann-Roch-Hirzebruch theorem. Despite this pivotal role in the trad
We investigate the kernel space of an integral operator M(g) depending on the spin g and describing an elliptic Fourier transformation. The operator M(g) is an intertwiner for the elliptic modular double formed from a pair of Sklyanin algebras with t
For a Hopf algebra B, we endow the Heisenberg double H(B^*) with the structure of a module algebra over the Drinfeld double D(B). Based on this property, we propose that H(B^*) is to be the counterpart of the algebra of fields on the quantum-group si