ترغب بنشر مسار تعليمي؟ اضغط هنا

Multiplicity of zeros and discrete orthogonal polynomials

82   0   0.0 ( 0 )
 نشر من قبل Ilia Krasikov
 تاريخ النشر 2002
  مجال البحث
والبحث باللغة English
 تأليف Ilia Krasikov




اسأل ChatGPT حول البحث

We consider a problem of bounding the maximal possible multiplicity of a zero at of some expansions $sum a_i F_i(x)$, at a certain point $c,$ depending on the chosen family ${F_i }$. The most important example is a polynomial with $c=1.$ It is shown that this question naturally leads to discrete orthogonal polynomials. Using this connection we derive some new bounds, in particular on the multiplicity of the zero at one of a polynomial with a prescribed norm.



قيم البحث

اقرأ أيضاً

97 - Ilia Krasikov 2004
We use Turan type inequalities to give new non-asymptotic bounds on the extreme zeros of orthogonal polynomials in terms of the coefficients of their three term recurrence. Most of our results deal with symmetric polynomials satisfying the three term recurrence $p_{k+1}=x p_k-c_k p_{k-1},$ with a nondecreasing sequence ${c_k}$. As a special case they include a non-asymptotic version of Mate, Nevai and Totik result on the largest zeros of orthogonal polynomials with $c_k=k^{delta} (1+ o(k^{-2/3})).$
83 - Ilia Krasikov 2003
Let $x_1$ and $x_k$ be the least and the largest zeros of the Laguerre or Jacobi polynomial of degree $k.$ We shall establish sharp inequalities of the form $x_1 <A, x_k >B,$ which are uniform in all the parameters involved. Together with inequalitie s in the opposite direction, recently obtained by the author, this locates the extreme zeros of classical orthogonal polynomials with the relative precision, roughly speaking, $O(k^{-2/3}).$
This paper deals with monic orthogonal polynomial sequences (MOPS in short) generated by a Geronimus canonical spectral transformation of a positive Borel measure $mu$, i.e., begin{equation*} frac{1}{(x-c)}dmu (x)+Ndelta (x-c), end{equation*} for som e free parameter $N in mathbb{R}_{+}$ and shift $c$. We analyze the behavior of the corresponding MOPS. In particular, we obtain such a behavior when the mass $N$ tends to infinity as well as we characterize the precise values of $N$ such the smallest (respectively, the largest) zero of these MOPS is located outside the support of the original measure $mu$. When $mu$ is semi-classical, we obtain the ladder operators and the second order linear differential equation satisfied by the Geronimus perturbed MOPS, and we also give an electrostatic interpretation of the zero distribution in terms of a logarithmic potential interaction under the action of an external field. We analyze such an equilibrium problem when the mass point of the perturbation $c$ is located outside of the support of $mu$.
The Cholesky factorization of the moment matrix is applied to discrete orthogonal polynomials on the homogeneous lattice. In particular, semiclassical discrete orthogonal polynomials, which are built in terms of a discrete Pearson equation, are studi ed. The Laguerre-Freud structure semi-infinite matrix that models the shifts by $pm 1$ in the independent variable of the set of orthogonal polynomials is introduced. In the semiclassical case it is proven that this Laguerre-Freud matrix is banded. From the well known fact that moments of the semiclassical weights are logarithmic derivatives of generalized hypergeometric functions, it is shown how the contiguous relations for these hypergeometric functions translate as symmetries for the corresponding moment matrix. It is found that the 3D Nijhoff-Capel discrete Toda lattice describes the corresponding contiguous shifts for the squared norms of the orthogonal polynomials. The continuous Toda for these semiclassical discrete orthogonal polynomials is discussed and the compatibility equations are derived. It also shown that the Kadomtesev-Petvishvilii equation is connected to an adequate deformed semiclassical discrete weight, but in this case the deformation do not satisfy a Pearson equation.
The Cholesky factorization of the moment matrix is considered for the generalized Charlier, generalized Meixner and generalized Hahn of type I discrete orthogonal polynomials. For the generalized Charlier we present an alternative derivation of the L aguerre-Freud relations found by Smet and Van Assche. Third order and second order order nonlinear ordinary differential equations are found for the recursion coefficient $gamma_n$. Laguerre-Freud relations are also found for the generalized Meixner case, which are compared with those of Smet and Van Assche. Finally, the generalized Hahn of type I discrete orthogonal polynomials are studied as well, and Laguerre-Freud equations are found and the differences with the equations found by Dominici and by Filipuk and Van Assche are given.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا