ﻻ يوجد ملخص باللغة العربية
The Cholesky factorization of the moment matrix is considered for the generalized Charlier, generalized Meixner and generalized Hahn of type I discrete orthogonal polynomials. For the generalized Charlier we present an alternative derivation of the Laguerre-Freud relations found by Smet and Van Assche. Third order and second order order nonlinear ordinary differential equations are found for the recursion coefficient $gamma_n$. Laguerre-Freud relations are also found for the generalized Meixner case, which are compared with those of Smet and Van Assche. Finally, the generalized Hahn of type I discrete orthogonal polynomials are studied as well, and Laguerre-Freud equations are found and the differences with the equations found by Dominici and by Filipuk and Van Assche are given.
The Cholesky factorization of the moment matrix is applied to discrete orthogonal polynomials on the homogeneous lattice. In particular, semiclassical discrete orthogonal polynomials, which are built in terms of a discrete Pearson equation, are studi
In this contribution we consider the sequence ${Q_{n}^{lambda}}_{ngeq 0} $ of monic polynomials orthogonal with respect to the following inner product involving differences begin{equation*} langle p,qrangle _{lambda}=int_{0}^{infty}pleft(xright) qlef
An algebra denoted $mmathfrak{H}$ with three generators is introduced and shown to admit embeddings of the Hahn algebra and the rational Hahn algebra. It has a real version of the deformed Jordan plane as a subalgebra whose connection with Hahn polyn
The present paper is about Bernstein-type estimates for Jacobi polynomials and their applications to various branches in mathematics. This is an old topic but we want to add a new wrinkle by establishing some intriguing connections with dispersive es
Over the last decade it has become clear that discrete Painleve equations appear in a wide range of important mathematical and physical problems. Thus, the question of recognizing a given non-autonomous recurrence as a discrete Painleve equation and