ﻻ يوجد ملخص باللغة العربية
Let X be a locally compact space, and let A and B be Co(X)-algebras. We define the notion of an asymptotic Co(X)-morphism from A to B and construct representable E-theory groups RE(X;A,B). These are the universal groups on the category of separable Co(X)-algebras that are Co(X)-stable, Co(X)-homotopy-invariant, and half-exact. If A is RKK(X)-nuclear, these groups are naturally isomorphic to Kasparovs representable KK-theory groups RKK(X;A,B). Applications and examples are also discussed.
We initiate the study of real $C^*$-algebras associated to higher-rank graphs $Lambda$, with a focus on their $K$-theory. Following Kasparov and Evans, we identify a spectral sequence which computes the $mathcal{CR}$ $K$-theory of $C^*_{mathbb R} (La
We develop methods for computing graded K-theory of C*-algebras as defined in terms of Kasparov theory. We establish grad
Exploiting the graph product structure and results concerning amalgamated free products of C*-algebras we provide an explicit computation of the K-theoretic invariants of right-angled Hecke C*-algebras, including concrete algebraic representants of a
We establish exact sequences in $KK$-theory for graded relative Cuntz-Pimsner algebras associated to nondegenerate $C^*$-correspondences. We use this to calculate the graded $K$-theory and $K$-homology of relative Cuntz-Krieger algebras of directed g
This paper provides an E-theoretic proof of an exact form, due to E. Troitsky, of the Mischenko-Fomenko Index Theorem for elliptic pseudodifferential operators over a unital C*-algebra. The main ingredients in the proof are the use of asymptotic morp