ترغب بنشر مسار تعليمي؟ اضغط هنا

Tangency quantum cohomology

108   0   0.0 ( 0 )
 نشر من قبل Joachim Kock
 تاريخ النشر 2000
  مجال البحث
والبحث باللغة English
 تأليف Joachim Kock




اسأل ChatGPT حول البحث

Let X be a smooth projective variety. Using modified psi classes on the stack of genus zero stable maps to X, a new associative quantum product is constructed on the cohomology space of X. When X is a homogeneous variety, this structure encodes the characteristic numbers of rational curves in X, and specialises to the usual quantum product upon resetting the parameters corresponding to the modified psi classes. For X = P^2, the product is equivalent to that of the contact cohomology of Ernstrom-Kennedy.



قيم البحث

اقرأ أيضاً

266 - Hiroshi Iritani 2015
We identify a certain universal Landau-Ginzburg model as a mirror of the big equivariant quantum cohomology of a (not necessarily compact or semipositive) toric manifold. The mirror map and the primitive form are constructed via Seidel elements and s hift operators for equivariant quantum cohomology. Primitive forms in non-equivariant theory are identified up to automorphisms of the mirror.
We give a complete description of the equivariant quantum cohomology ring of any smooth hypertoric variety, and find a mirror formula for the quantum differential equation.
The quantum period of a variety X is a generating function for certain Gromov-Witten invariants of X which plays an important role in mirror symmetry. In this paper we compute the quantum periods of all 3-dimensional Fano manifolds. In particular we show that 3-dimensional Fano manifolds with very ample anticanonical bundle have mirrors given by a collection of Laurent polynomials called Minkowski polynomials. This was conjectured in joint work with Golyshev. It suggests a new approach to the classification of Fano manifolds: by proving an appropriate mirror theorem and then classifying Fano mirrors. Our methods are likely to be of independent interest. We rework the Mori-Mukai classification of 3-dimensional Fano manifolds, showing that each of them can be expressed as the zero locus of a section of a homogeneous vector bundle over a GIT quotient V/G, where G is a product of groups of the form GL_n(C) and V is a representation of G. When G=GL_1(C)^r, this expresses the Fano 3-fold as a toric complete intersection; in the remaining cases, it expresses the Fano 3-fold as a tautological subvariety of a Grassmannian, partial flag manifold, or projective bundle thereon. We then compute the quantum periods using the Quantum Lefschetz Hyperplane Theorem of Coates-Givental and the Abelian/non-Abelian correspondence of Bertram-Ciocan-Fontanine-Kim-Sabbah.
We collect a list of known four-dimensional Fano manifolds and compute their quantum periods. This list includes all four-dimensional Fano manifolds of index greater than one, all four-dimensional toric Fano manifolds, all four-dimensional products o f lower-dimensional Fano manifolds, and certain complete intersections in projective bundles.
91 - Zhentao Lu 2015
For a class of monadic deformations of the tangent bundles over nef-Fano smooth projective toric varieties, we study the correlators using quantum sheaf cohomology. We prove a summation formula for the correlators, confirming a conjecture by McOrist and Melnikov in physics literature. This generalizes the Szenes-Vergne proof of Toric Residue Mirror Conjecture for hypersurfaces.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا