ترغب بنشر مسار تعليمي؟ اضغط هنا

A mirror construction for the big equivariant quantum cohomology of toric manifolds

266   0   0.0 ( 0 )
 نشر من قبل Hiroshi Iritani
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English
 تأليف Hiroshi Iritani




اسأل ChatGPT حول البحث

We identify a certain universal Landau-Ginzburg model as a mirror of the big equivariant quantum cohomology of a (not necessarily compact or semipositive) toric manifold. The mirror map and the primitive form are constructed via Seidel elements and shift operators for equivariant quantum cohomology. Primitive forms in non-equivariant theory are identified up to automorphisms of the mirror.



قيم البحث

اقرأ أيضاً

143 - Gottfried Barthel 1999
We investigate the equivariant intersection cohomology of a toric variety. Considering the defining fan of the variety as a finite topological space with the subfans being the open sets (that corresponds to the toric topology given by the invariant o pen subsets), equivariant intersection cohomology provides a sheaf (of graded modules over a sheaf of graded rings) on that fan space. We prove that this sheaf is a minimal extension sheaf, i.e., that it satisfies three relatively simple axioms which are known to characterize such a sheaf up to isomorphism. In the verification of the second of these axioms, a key role is played by equivariantly formal toric varieties, where equivariant and usual (non-equivariant) intersection cohomology determine each other by Kunneth type formulae. Minimal extension sheaves can be constructed in a purely formal way and thus also exist for non-rational fans. As a consequence, we can extend the notion of an equivariantly formal fan even to this general setup. In this way, it will be possible to introduce virtual intersection cohomology for equivariantly formal non-rational fans.
Using the mirror theorem [CCIT15], we give a Landau-Ginzburg mirror description for the big equivariant quantum cohomology of toric Deligne-Mumford stacks. More precisely, we prove that the big equivariant quantum D-module of a toric Deligne-Mumford stack is isomorphic to the Saito structure associated to the mirror Landau-Ginzburg potential. We give a GKZ-style presentation of the quantum D-module, and a combinatorial description of quantum cohomology as a quantum Stanley-Reisner ring. We establish the convergence of the mirror isomorphism and of quantum cohomology in the big and equivariant setting.
107 - Joachim Kock 2000
Let X be a smooth projective variety. Using modified psi classes on the stack of genus zero stable maps to X, a new associative quantum product is constructed on the cohomology space of X. When X is a homogeneous variety, this structure encodes the c haracteristic numbers of rational curves in X, and specialises to the usual quantum product upon resetting the parameters corresponding to the modified psi classes. For X = P^2, the product is equivalent to that of the contact cohomology of Ernstrom-Kennedy.
We prove a Givental-style mirror theorem for toric Deligne--Mumford stacks X. This determines the genus-zero Gromov--Witten invariants of X in terms of an explicit hypergeometric function, called the I-function, that takes values in the Chen--Ruan orbifold cohomology of X.
The quantum period of a variety X is a generating function for certain Gromov-Witten invariants of X which plays an important role in mirror symmetry. In this paper we compute the quantum periods of all 3-dimensional Fano manifolds. In particular we show that 3-dimensional Fano manifolds with very ample anticanonical bundle have mirrors given by a collection of Laurent polynomials called Minkowski polynomials. This was conjectured in joint work with Golyshev. It suggests a new approach to the classification of Fano manifolds: by proving an appropriate mirror theorem and then classifying Fano mirrors. Our methods are likely to be of independent interest. We rework the Mori-Mukai classification of 3-dimensional Fano manifolds, showing that each of them can be expressed as the zero locus of a section of a homogeneous vector bundle over a GIT quotient V/G, where G is a product of groups of the form GL_n(C) and V is a representation of G. When G=GL_1(C)^r, this expresses the Fano 3-fold as a toric complete intersection; in the remaining cases, it expresses the Fano 3-fold as a tautological subvariety of a Grassmannian, partial flag manifold, or projective bundle thereon. We then compute the quantum periods using the Quantum Lefschetz Hyperplane Theorem of Coates-Givental and the Abelian/non-Abelian correspondence of Bertram-Ciocan-Fontanine-Kim-Sabbah.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا