ﻻ يوجد ملخص باللغة العربية
We identify a certain universal Landau-Ginzburg model as a mirror of the big equivariant quantum cohomology of a (not necessarily compact or semipositive) toric manifold. The mirror map and the primitive form are constructed via Seidel elements and shift operators for equivariant quantum cohomology. Primitive forms in non-equivariant theory are identified up to automorphisms of the mirror.
We investigate the equivariant intersection cohomology of a toric variety. Considering the defining fan of the variety as a finite topological space with the subfans being the open sets (that corresponds to the toric topology given by the invariant o
Using the mirror theorem [CCIT15], we give a Landau-Ginzburg mirror description for the big equivariant quantum cohomology of toric Deligne-Mumford stacks. More precisely, we prove that the big equivariant quantum D-module of a toric Deligne-Mumford
Let X be a smooth projective variety. Using modified psi classes on the stack of genus zero stable maps to X, a new associative quantum product is constructed on the cohomology space of X. When X is a homogeneous variety, this structure encodes the c
We prove a Givental-style mirror theorem for toric Deligne--Mumford stacks X. This determines the genus-zero Gromov--Witten invariants of X in terms of an explicit hypergeometric function, called the I-function, that takes values in the Chen--Ruan orbifold cohomology of X.
The quantum period of a variety X is a generating function for certain Gromov-Witten invariants of X which plays an important role in mirror symmetry. In this paper we compute the quantum periods of all 3-dimensional Fano manifolds. In particular we