ﻻ يوجد ملخص باللغة العربية
Let $A(n,r;3)$ be the total weight of the alternating sign matrices of order $n$ whose sole `1 of the first row is at the $r^{th}$ column and the weight of an individual matrix is $3^k$ if it has $k$ entries equal to -1. Define the sequence of the generating functions $G_n(t)=sum_{r=1}^n A(n,r;3)t^{r-1}$. Results of two different kind are obtained. On the one hand I made the explicit expression for the even subsequence $G_{2 u}(t)$ in terms of two linear homogeneous second order recurrence in $ u$ (Theorem 1). On the other hand I brought to light the nice connection between the neighbouring functions $G_{2 u+1}(t)$ and $G_{2 u}(t)$ (Theorem 2). The 3-enumeration $A(n;3) equiv G_n(1)$ which was found by Kuperberg is reproduced as well.
It was shown by Kuperberg that the partition function of the square-ice model related to half-turn symmetric alternating-sign matrices of even order is the product of two similar factors. We propose a square-ice model whose states are in bijection wi
It was shown by Kuperberg that the partition function of the square-ice model related to the quarter-turn symmetric alternating-sign matrices of even order is the product of two similar factors. We propose a square-ice model whose states are in bijec
We consider the alternating sign matrices of the odd order that have some kind of central symmetry. Namely, we deal with matrices invariant under the half-turn, quarter-turn and flips in both diagonals. In all these cases, there are two natural struc
We consider various properties and manifestations of some sign-alternating univariate polynomials borne of right-triangular integer arrays related to certain generalizations of the Fibonacci sequence. Using a theory of the root geometry of polynomial
We consider the family of $3 times 3$ operator matrices $H(K),$ $K in {Bbb T}^{rm d}:=(-pi; pi]^{rm d}$ arising in the spectral analysis of the energy operator of the spin-boson model of radioactive decay with two bosons on the torus ${Bbb T}^{rm d}.