ترغب بنشر مسار تعليمي؟ اضغط هنا

Analytic description of the essential spectrum of a family of $3 times 3$ operator matrices

56   0   0.0 ( 0 )
 نشر من قبل Tulkin Rasulov Husenovich
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the family of $3 times 3$ operator matrices $H(K),$ $K in {Bbb T}^{rm d}:=(-pi; pi]^{rm d}$ arising in the spectral analysis of the energy operator of the spin-boson model of radioactive decay with two bosons on the torus ${Bbb T}^{rm d}.$ We obtain an analogue of the Faddeev equation for the eigenfunctions of $H(K)$. An analytic description of the essential spectrum of $H(K)$ is established. Further, it is shown that the essential spectrum of $H(K)$ consists the union of at most three bounded closed intervals.



قيم البحث

اقرأ أيضاً

We are interested in the phenomenon of the essential spectrum instability for a class of unbounded (block) Jacobi matrices. We give a series of sufficient conditions for the matrices from certain classes to have a discrete spectrum on a half-axis of a real line. An extensive list of examples showing the sharpness of obtained results is provided.
146 - M.Gadella , J.Negro , L.M. Nieto 2010
We construct the spectrum generating algebra (SGA) for a free particle in the three dimensional sphere $S^3$ for both, classical and quantum descriptions. In the classical approach, the SGA supplies time-dependent constants of motion that allow to so lve algebraically the motion. In the quantum case, the SGA include the ladder operators that give the eigenstates of the free Hamiltonian. We study this quantum case from two equivalent points of view.
We obtain time dependent $q$-Gaussian wave-packet solutions to a non linear Schrodinger equation recently advanced by Nobre, Rego-Montero and Tsallis (NRT) [Phys. Rev. Lett. 106 (2011) 10601]. The NRT non-linear equation admits plane wave-like soluti ons ($q$-plane waves) compatible with the celebrated de Broglie relations connecting wave number and frequency, respectively, with energy and momentum. The NRT equation, inspired in the $q$-generalized thermostatistical formalism, is characterized by a parameter $q$, and in the limit $q to 1$ reduces to the standard, linear Schrodinger equation. The $q$-Gaussian solutions to the NRT equation investigated here admit as a particular instance the previously known $q$-plane wave solutions. The present work thus extends the range of possible processes yielded by the NRT dynamics that admit an analytical, exact treatment. In the $q to 1$ limit the $q$-Gaussian solutions correspond to the Gaussian wave packet solutions to the free particle linear Schrodinger equation. In the present work we also show that there are other families of nonlinear Schrodinger-like equations, besides the NRT one, exhibiting a dynamics compatible with the de Broglie relations. Remarkably, however, the existence of time dependent Gaussian-like wave packet solutions is a unique feature of the NRT equation not shared by the aforementioned, more general, families of nonlinear evolution equations.
257 - Monika Winklmeier 2008
The operator associated to the angular part of the Dirac equation in the Kerr-Newman background metric is a block operator matrix with bounded diagonal and unbounded off-diagonal entries. The aim of this paper is to establish a variational principle for block operator matrices of this type and to derive thereof upper and lower bounds for the angular operator mentioned above. In the last section, these analytic bounds are compared to numerical values from the literature.
We study the spectrum of the linear operator $L = - partial_{theta} - epsilon partial_{theta} (sin theta partial_{theta})$ subject to the periodic boundary conditions on $theta in [-pi,pi]$. We prove that the operator is closed in $L^2([-pi,pi])$ wit h the domain in $H^1_{rm per}([-pi,pi])$ for $|epsilon| < 2$, its spectrum consists of an infinite sequence of isolated eigenvalues and the set of corresponding eigenfunctions is complete. By using numerical approximations of eigenvalues and eigenfunctions, we show that all eigenvalues are simple, located on the imaginary axis and the angle between two subsequent eigenfunctions tends to zero for larger eigenvalues. As a result, the complete set of linearly independent eigenfunctions does not form a basis in $H^1_{rm per}([-pi,pi])$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا