ﻻ يوجد ملخص باللغة العربية
We consider the family of $3 times 3$ operator matrices $H(K),$ $K in {Bbb T}^{rm d}:=(-pi; pi]^{rm d}$ arising in the spectral analysis of the energy operator of the spin-boson model of radioactive decay with two bosons on the torus ${Bbb T}^{rm d}.$ We obtain an analogue of the Faddeev equation for the eigenfunctions of $H(K)$. An analytic description of the essential spectrum of $H(K)$ is established. Further, it is shown that the essential spectrum of $H(K)$ consists the union of at most three bounded closed intervals.
We are interested in the phenomenon of the essential spectrum instability for a class of unbounded (block) Jacobi matrices. We give a series of sufficient conditions for the matrices from certain classes to have a discrete spectrum on a half-axis of
We construct the spectrum generating algebra (SGA) for a free particle in the three dimensional sphere $S^3$ for both, classical and quantum descriptions. In the classical approach, the SGA supplies time-dependent constants of motion that allow to so
We obtain time dependent $q$-Gaussian wave-packet solutions to a non linear Schrodinger equation recently advanced by Nobre, Rego-Montero and Tsallis (NRT) [Phys. Rev. Lett. 106 (2011) 10601]. The NRT non-linear equation admits plane wave-like soluti
The operator associated to the angular part of the Dirac equation in the Kerr-Newman background metric is a block operator matrix with bounded diagonal and unbounded off-diagonal entries. The aim of this paper is to establish a variational principle
We study the spectrum of the linear operator $L = - partial_{theta} - epsilon partial_{theta} (sin theta partial_{theta})$ subject to the periodic boundary conditions on $theta in [-pi,pi]$. We prove that the operator is closed in $L^2([-pi,pi])$ wit