ﻻ يوجد ملخص باللغة العربية
We investigate the problems of consistency and causality for the equations of motion describing massive spin two field in external gravitational and massless scalar dilaton fields in arbitrary spacetime dimension. From the field theoretical point of view we consider a general classical action with non-minimal couplings and find gravitational and dilaton background on which this action describes a theory consistent with the flat space limit. In the case of pure gravitational background all field components propagate causally. We show also that the massive spin two field can be consistently described in arbitrary background by means of the lagrangian representing an infinite series in the inverse mass. Within string theory we obtain equations of motion for the massive spin two field coupled to gravity from the requirement of quantum Weyl invariance of the corresponding two dimensional sigma-model. In the lowest order in $alpha$ we demonstrate that these effective equations of motion coincide with consistent equations derived in field theory.
We investigate the problem of derivation of consistent equations of motion for the massive spin 2 field interacting with gravity within both field theory and string theory. In field theory we derive the most general classical action with non-minimal
We investigate the structure of equations of motion and lagrangian constraints in a general theory of massive spin 2 field interacting with external gravity. We demonstrate how consistency with the flat limit can be achieved in a number of specific s
We establish a duality between massive fermions coupled to topologically massive gravity (TGM) in $d=3$ space-time dimensions and a purely gravity theory which also will turn out to be a TGM theory but with different parameters: the original graviton
We demonstrate an equivalence between the wave equation obeyed by the entanglement entropy of CFT subregions and the linearized bulk Einstein equation in Anti-de Sitter pace. In doing so, we make use of the formalism of kinematic space [arXiv:1505.05
It is possible to couple Dirac-Born-Infeld (DBI) scalars possessing generalized Galilean internal shift symmetries (Galileons) to nonlinear massive gravity in four dimensions, in such a manner that the interactions maintain the Galilean symmetry. Suc