ﻻ يوجد ملخص باللغة العربية
We establish a duality between massive fermions coupled to topologically massive gravity (TGM) in $d=3$ space-time dimensions and a purely gravity theory which also will turn out to be a TGM theory but with different parameters: the original graviton mass in the TGM theory coupled to fermions picks-up a contribution from fermion bosonization. We obtain explicit bosonization rules for the fermionic currents and for the energy-momentum-tensor showing that the identifications do not depend explicitly on the parameters of the theory. These results are the gravitational analog of the results for $2+1$ Abelian and non-Abelian bosonization in flat space-time.
This paper is withdrawn because its results have been previously reported in arxiv hep-th/0507200.
It is possible to couple Dirac-Born-Infeld (DBI) scalars possessing generalized Galilean internal shift symmetries (Galileons) to nonlinear massive gravity in four dimensions, in such a manner that the interactions maintain the Galilean symmetry. Suc
Wolfgang Kummer was a pioneer of two-dimensional gravity and a strong advocate of the first order formulation in terms of Cartan variables. In the present work we apply Wolfgang Kummers philosophy, the `Vienna School approach, to a specific three-dim
We investigate the problems of consistency and causality for the equations of motion describing massive spin two field in external gravitational and massless scalar dilaton fields in arbitrary spacetime dimension. From the field theoretical point of
A recent paper [arXiv:0801.4566] claims that topologically massive gravity contains only chiral boundary excitations at a particular value of the Chern-Simons coupling. On the other hand, propagating bulk degrees of freedom were found even at the chi