ﻻ يوجد ملخص باللغة العربية
We derive a long distance effective action for space-time coordinates from a IIB matrix model. It provides us an effective tool to study the structures of space-time. We prove the finiteness of the theory for finite $N$ to all orders of the perturbation theory. Space-time is shown to be inseparable and its dimensionality is dynamically determined. The IIB matrix model contains a mechanism to ensure the vanishing cosmological constant which does not rely on the manifest supersymmetry. We discuss possible mechanisms to obtain realistic dimensionality and gauge groups from the IIB matrix model.
The origin of our four-dimensional space-time has been pursued through the dynamical aspects of the IIB matrix model via the improved mean field approximation. Former works have been focused on the specific choice of configurations as ansatz which pr
We have analyzed IIB matrix model based on the improved mean field approximation (IMFA) and have obtained a clue that the four-dimensional space-time appears as its most stable vacuum. This method is a systematic way to give an improved perturbation
We review our proposal for a constructive definition of superstring, type IIB matrix model. The IIB matrix model is a manifestly covariant model for space-time and matter which possesses N=2 supersymmetry in ten dimensions. We refine our arguments to
For the purpose of analyzing non-perturbative dynamics of string theory, Nishimura and Sugino have applied an improved mean field approximation (IMFA) to IIB matrix model. We have extracted the essence of the IMFA and obtained a general scheme, an im
The Lorentzian type IIB matrix model has been studied as a promising candidate for a nonperturbative formulation of superstring theory. In particular, the emergence of (3+1)D expanding space-time was observed by Monte Carlo studies of this model. It