ﻻ يوجد ملخص باللغة العربية
We have analyzed IIB matrix model based on the improved mean field approximation (IMFA) and have obtained a clue that the four-dimensional space-time appears as its most stable vacuum. This method is a systematic way to give an improved perturbation series and was first applied to IIB matrix model by Nishimura and Sugino. In our previous paper we reformed this method and proposed a criterion for convergence of the improved series, that is, the appearance of the ``plateau. In this paper, we perform higher order calculations, and find that our improved free energy tends to have a plateau, which shows that IMFA works well in IIB matrix model.
For the purpose of analyzing non-perturbative dynamics of string theory, Nishimura and Sugino have applied an improved mean field approximation (IMFA) to IIB matrix model. We have extracted the essence of the IMFA and obtained a general scheme, an im
The spontaneous breakdown of SO(10) symmetry of the IIB matrix model has been studied by using the improved mean field approximation (IMFA). In this report, the eighth-order contribution to the improved perturbative series is obtained, which involves
The origin of our four-dimensional space-time has been pursued through the dynamical aspects of the IIB matrix model via the improved mean field approximation. Former works have been focused on the specific choice of configurations as ansatz which pr
We present a new scheme for extracting approximate values in ``the improved perturbation method, which is a sort of resummation technique capable of evaluating a series outside the radius of convergence. We employ the distribution profile of the seri
We derive a long distance effective action for space-time coordinates from a IIB matrix model. It provides us an effective tool to study the structures of space-time. We prove the finiteness of the theory for finite $N$ to all orders of the perturbat