ﻻ يوجد ملخص باللغة العربية
We point out that the matrix description of M-theory compactified on Calabi-Yau threefolds is in many respects simpler than the matrix description of a $T^6$ compactification. This is largely because of the differences between D6 branes wrapped on Calabi-Yau threefolds and D6 branes wrapped on six-tori. In particular, if we define the matrix theory following the prescription of Sen and Seiberg, we find that the remaining degrees of freedom are decoupled from gravity.
We derive global constraints on the non-BPS sector of supersymmetric 2d sigma-models whose target space is a Calabi-Yau manifold. When the total Hodge number of the Calabi-Yau threefold is sufficiently large, we show that there must be non-BPS primar
We use the results of hep-th/0007174 on the simple current classification of open unoriented CFTs to construct half supersymmetry preserving crosscap states for rational Calabi-Yau compactifications. We show that the corresponding orientifold fixed p
We prove that a Kahler supermetric on a supermanifold with one complex fermionic dimension admits a super Ricci-flat supermetric if and only if the bosonic metric has vanishing scalar curvature. As a corollary, it follows that Yaus theorem does not hold for supermanifolds.
We study when Calabi-Yau supermanifolds M(1|2) with one complex bosonic coordinate and two complex fermionic coordinates are super Ricci-flat, and find that if the bosonic manifold is compact, it must have constant scalar curvature.
We show how the smooth geometry of Calabi-Yau manifolds emerges from the thermodynamic limit of the statistical mechanical model of crystal melting defined in our previous paper arXiv:0811.2801. In particular, the thermodynamic partition function of