ﻻ يوجد ملخص باللغة العربية
By considering constraints on the dimensions of the Lie algebra corresponding to the weight one states of Z_2 and Z_3 orbifold models arising from imposing the appropriate modular properties on the graded characters of the automorphisms on the underlying conformal field theory, we propose a set of constructions of all but one of the 71 self-dual meromorphic bosonic conformal field theories at central charge 24. In the Z_2 case, this leads to an extension of the neighborhood graph of the even self-dual lattices in 24 dimensions to conformal field theories, and we demonstrate that the graph becomes disconnected.
Following on from earlier work relating modules of meromorphic bosonic conformal field theories to states representing solutions of certain simple equations inside the theories, we show, in the context of orbifold theories, that the intertwiners betw
An account is given of the structure and representations of chiral bosonic meromorphic conformal field theories (CFTs), and, in particular, the conditions under which such a CFT may be extended by a representation to form a new theory. This general a
Following on from a general observation in an earlier paper, we consider the continuous symmetries of a certain class of conformal field theories constructed from lattices and their reflection-twisted orbifolds. It is shown that the naive expectation
Following on from recent work describing the representation content of a meromorphic bosonic conformal field theory in terms of a certain state inside the theory corresponding to a fixed state in the representation, and using work of Zhu on a corresp
We investigate orbifold constructions of conformal field theories from lattices by no-fixed-point automorphisms (NFPAs) $Z_p$ for $p$ prime, $p>2$, concentrating on the case $p=3$. Explicit expressions are given for most of the relevant vertex operat