ﻻ يوجد ملخص باللغة العربية
Seiberg-Witten solutions of four-dimensional supersymmetric gauge theories possess rich but involved integrable structures. The goal of this paper is to show that an isomonodromy problem provides a unified framework for understanding those various features of integrability. The Seiberg-Witten solution itself can be interpreted as a WKB limit of this isomonodromy problem. The origin of underlying Whitham dynamics (adiabatic deformation of an isospectral problem), too, can be similarly explained by a more refined asymptotic method (multiscale analysis). The case of $N=2$ SU($s$) supersymmetric Yang-Mills theory without matter is considered in detail for illustration. The isomonodromy problem in this case is closely related to the third Painleve equation and its multicomponent analogues. An implicit relation to $ttbar$ fusion of topological sigma models is thereby expected.
We elaborate the generalizations of the approach to gauge-invariant deformations of the gauge theories developed in our previous work [1]. In the given paper we construct the exact transformations defying the gauge-invariant deformed theory on the ba
We study the relationship between three non-Abelian topologically massive gauge theories, viz. the naive non-Abelian generalization of the Abelian model, Freedman-Townsend model and the dynamical 2-form theory, in the canonical framework. Hamiltonian
We study dynamics of two-dimensional N=(0,1) supersymmetric gauge theories. In particular, we propose that there is an infrared triality between certain triples of theories with orthogonal and symplectic gauge groups. The proposal is supported by mat
A solution to the infinite coupling problem for N=2 conformal supersymmetric gauge theories in four dimensions is presented. The infinitely-coupled theories are argued to be interacting superconformal field theories (SCFTs) with weakly gauged flavor
In this note we study IR limits of pure two-dimensional supersymmetric gauge theories with semisimple non-simply-connected gauge groups including SU(k)/Z_k, SO(2k)/Z_2, Sp(2k)/Z_2, E_6/Z_3, and E_7/Z_2 for various discrete theta angles, both directly