ترغب بنشر مسار تعليمي؟ اضغط هنا

Trialities of minimally supersymmetric 2d gauge theories

166   0   0.0 ( 0 )
 نشر من قبل Pavel Putrov
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study dynamics of two-dimensional N=(0,1) supersymmetric gauge theories. In particular, we propose that there is an infrared triality between certain triples of theories with orthogonal and symplectic gauge groups. The proposal is supported by matching of anomalies and elliptic genera. This triality can be viewed as a (0,1) counterpart of the (0,2) triality proposed earlier by two of the authors and A. Gadde. We also describe the relation between global anomalies in gauge theoretic and sigma-model descriptions, filling in a gap in the present literature.



قيم البحث

اقرأ أيضاً

98 - V.G. Kac , A.V. Smilga 1999
We consider the pure supersymmetric Yang--Mills theories placed on a small 3-dimensional spatial torus with higher orthogonal and exceptional gauge groups. The problem of constructing the quantum vacuum states is reduced to a pure mathematical proble m of classifying the flat connections on 3-torus. The latter problem is equivalent to the problem of classification of commuting triples of elements in a connected simply connected compact Lie group which is solved in this paper. In particular, we show that for higher orthogonal SO(N), N > 6, and for all exceptional groups the moduli space of flat connections involves several distinct connected components. The total number of vacuumstates is given in all cases by the dual Coxeter number of the group which agrees with the result obtained earlier with the instanton technique.
We revisit the definition of the 6j-symbols from the modular double of U_q(sl(2,R)), referred to as b-6j symbols. Our new results are (i) the identification of particularly natural normalization conditions, and (ii) new integral representations for t his object. This is used to briefly discuss possible applications to quantum hyperbolic geometry, and to the study of certain supersymmetric gauge theories. We show, in particular, that the b-6j symbol has leading semiclassical asymptotics given by the volume of a non-ideal tetrahedron. We furthermore observe a close relation with the problem to quantize natural Darboux coordinates for moduli spaces of flat connections on Riemann surfaces related to the Fenchel-Nielsen coordinates. Our new integral representations finally indicate a possible interpretation of the b-6j symbols as partition functions of three-dimensional N=2 supersymmetric gauge theories.
157 - Thomas Appelquist 1997
We compare gap equation predictions for the spontaneous breaking of global symmetries in supersymmetric Yang-Mills theory to nonperturbative results from holomorphic effective action techniques. In the theory without matter fields, both approaches de scribe the formation of a gluino condensate. With $N_f$ flavors of quark and squark fields, and with $N_f$ below a certain critical value, the coupled gap equations have a solution for quark and gluino condensate formation, corresponding to breaking of global symmetries and of supersymmetry. This appears to disagree with the newer nonperturbative techniques, but the reliability of gap equations in this context and whether the solution represents the ground state remain unclear.
Seiberg-Witten solutions of four-dimensional supersymmetric gauge theories possess rich but involved integrable structures. The goal of this paper is to show that an isomonodromy problem provides a unified framework for understanding those various fe atures of integrability. The Seiberg-Witten solution itself can be interpreted as a WKB limit of this isomonodromy problem. The origin of underlying Whitham dynamics (adiabatic deformation of an isospectral problem), too, can be similarly explained by a more refined asymptotic method (multiscale analysis). The case of $N=2$ SU($s$) supersymmetric Yang-Mills theory without matter is considered in detail for illustration. The isomonodromy problem in this case is closely related to the third Painleve equation and its multicomponent analogues. An implicit relation to $ttbar$ fusion of topological sigma models is thereby expected.
Strings in $mathcal{N}=2$ supersymmetric ${rm U}(1)^N$ gauge theories with $N$ hypermultiplets are studied in the generic setting of an arbitrary Fayet-Iliopoulos triplet of parameters for each gauge group and an invertible charge matrix. Although th e string tension is generically of a square-root form, it turns out that all existing BPS (Bogomolnyi-Prasad-Sommerfield) solutions have a tension which is linear in the magnetic fluxes, which in turn are linearly related to the winding numbers. The main result is a series of theorems establishing three different kinds of solutions of the so-called constraint equations, which can be pictured as orthogonal directions to the magnetic flux in ${rm SU}(2)_R$ space. We further prove for all cases, that a seemingly vanishing Bogomolnyi bound cannot have solutions. Finally, we write down the most general vortex equations in both master form and Taubes-like form. Remarkably, the final vortex equations essentially look Abelian in the sense that there is no trace of the ${rm SU}(2)_R$ symmetry in the equations, after the constraint equations have been solved.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا