ﻻ يوجد ملخص باللغة العربية
We study dynamics of two-dimensional N=(0,1) supersymmetric gauge theories. In particular, we propose that there is an infrared triality between certain triples of theories with orthogonal and symplectic gauge groups. The proposal is supported by matching of anomalies and elliptic genera. This triality can be viewed as a (0,1) counterpart of the (0,2) triality proposed earlier by two of the authors and A. Gadde. We also describe the relation between global anomalies in gauge theoretic and sigma-model descriptions, filling in a gap in the present literature.
We consider the pure supersymmetric Yang--Mills theories placed on a small 3-dimensional spatial torus with higher orthogonal and exceptional gauge groups. The problem of constructing the quantum vacuum states is reduced to a pure mathematical proble
We revisit the definition of the 6j-symbols from the modular double of U_q(sl(2,R)), referred to as b-6j symbols. Our new results are (i) the identification of particularly natural normalization conditions, and (ii) new integral representations for t
We compare gap equation predictions for the spontaneous breaking of global symmetries in supersymmetric Yang-Mills theory to nonperturbative results from holomorphic effective action techniques. In the theory without matter fields, both approaches de
Seiberg-Witten solutions of four-dimensional supersymmetric gauge theories possess rich but involved integrable structures. The goal of this paper is to show that an isomonodromy problem provides a unified framework for understanding those various fe
Strings in $mathcal{N}=2$ supersymmetric ${rm U}(1)^N$ gauge theories with $N$ hypermultiplets are studied in the generic setting of an arbitrary Fayet-Iliopoulos triplet of parameters for each gauge group and an invertible charge matrix. Although th