ﻻ يوجد ملخص باللغة العربية
We study the multiloop amplitudes of the light-cone gauge closed bosonic string field theory for $d eq 26$. We show that the amplitudes can be recast into a BRST invariant form by adding a nonstandard worldsheet theory for the longitudinal variables $X^{pm}$ and the reparametrization ghost system. The results obtained in this paper for bosonic strings provide a first step towards the examination whether the dimensional regularization works for the multiloop amplitudes of the light-cone gauge superstring field theory.
Feynman amplitudes of light-cone gauge superstring field theory are ill-defined because of various divergences. In a previous paper, one of the authors showed that taking the worldsheet theory to be the one in a linear dilaton background $Phi=-iQX^{1
We study light-cone gauge string field theory in noncritical space-time dimensions. Such a theory corresponds to a string theory in a Lorentz noninvariant background. We identify the worldsheet theory for the longitudinal coordinate variables $X^pm$
We study the odd spin structure contributions to the multiloop amplitudes of light-cone gauge superstring field theory. We show that they coincide with the amplitudes in the conformal gauge with two of the vertex operators chosen to be in the picture
Light-cone gauge NSR string theory in noncritical dimensions should correspond to a string theory with a nonstandard longitudinal part. Supersymmetrizing the bosonic case [arXiv:0909.4675], we formulate a superconformal worldsheet theory for the long
Light-cone gauge superstring theory in noncritical dimensions corresponds to a worldsheet theory with nonstandard longitudinal part in the conformal gauge. The longitudinal part of the worldsheet theory is a superconformal field theory called X^{pm}