ﻻ يوجد ملخص باللغة العربية
We calculate the partition functions of QCD in two dimensions on a cylinder and on a torus in the gauge $partial_{0} A_{0} = 0$ by integrating explicitly over the non zero modes of the Fourier expansion in the periodic time variable. The result is a one dimensional Kazakov-Migdal matrix model with eigenvalues on a circle rather than on a line. We prove that our result coincides with the standard expansion in representations of the gauge group. This involves a non trivial modular transformation from an expansion in exponentials of $g^2$ to one in exponentials of $1/g^2$. Finally we argue that the states of the $U(N)$ or $SU(N)$ partition function can be interpreted as a gas of N free fermions, and the grand canonical partition function of such ensemble is given explicitly as an infinite product.
We propose a stochastic particle model in (1+1)-dimensions, with one dimension corresponding to rapidity and the other one to the transverse size of a dipole in QCD, which mimics high-energy evolution and scattering in QCD in the presence of both sat
We consider two-dimensional Yang-Mills theories on arbitrary Riemann surfaces. We introduce a generalized Yang-Mills action, which coincides with the ordinary one on flat surfaces but differs from it in its coupling to two-dimensional gravity. The qu
We introduce a full set of rules to directly express all $M$-point conformal blocks in one- and two-dimensional conformal field theories, irrespective of the topology. The $M$-point conformal blocks are power series expansion in some carefully-chosen
Two-dimensional SU$(N)$ gauge theory coupled to a Majorana fermion in the adjoint representation is a nice toy model for higher-dimensional gauge dynamics. It possesses a multitude of gluinoball bound states whose spectrum has been studied using nume
The Luttinger liquid (LL) model of one-dimensional (1D) electronic systems provides a powerful tool for understanding strongly correlated physics including phenomena such as spin-charge separation. Substantial theoretical efforts have attempted to ex