ﻻ يوجد ملخص باللغة العربية
We introduce a full set of rules to directly express all $M$-point conformal blocks in one- and two-dimensional conformal field theories, irrespective of the topology. The $M$-point conformal blocks are power series expansion in some carefully-chosen conformal cross-ratios. We then prove the rules for any topology constructively with the help of the known position space operator product expansion. To this end, we first compute the action of the position space operator product expansion on the most general function of position space coordinates relevant to conformal field theory. These results provide the complete knowledge of all $M$-point conformal blocks with arbitrary external and internal quasi-primary operators (including arbitrary spins in two dimensions) in any topology.
We compute $M$-point conformal blocks with scalar external and exchange operators in the so-called comb configuration for any $M$ in any dimension $d$. Our computation involves repeated use of the operator product expansion to increase the number of
We consider 5-point functions in conformal field theories in d > 2 dimensions. Using weight-shifting operators, we derive recursion relations which allow for the computation of arbitrary conformal blocks appearing in 5-point functions of scalar opera
We compute $d$-dimensional scalar six-point conformal blocks in the two possible topologies allowed by the operator product expansion. Our computation is a simple application of the embedding space operator product expansion formalism developed recen
Extending previous work on 2 -- and 3 -- point functions, we study the 4 -- point function and its conformal block structure in conformal quantum mechanics CFT$_1$, which realizes the SO(2,1) symmetry group. Conformal covariance is preserved even tho
Seven-point functions have two inequivalent topologies or channels. The comb channel has been computed previously and here we compute scalar conformal blocks in the extended snowflake channel in $d$ dimensions. Our computation relies on the known act