ترغب بنشر مسار تعليمي؟ اضغط هنا

Scale-dependent metric and causal structures in Quantum Einstein Gravity

99   0   0.0 ( 0 )
 نشر من قبل Jan-Markus Schwindt
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Within the asymptotic safety scenario for gravity various conceptual issues related to the scale dependence of the metric are analyzed. The running effective field equations implied by the effective average action of Quantum Einstein Gravity (QEG) and the resulting families of resolution dependent metrics are discussed. The status of scale dependent vs. scale independent diffeomorphisms is clarified, and the difference between isometries implemented by scale dependent and independent Killing vectors is explained. A concept of scale dependent causality is proposed and illustrated by various simple examples. The possibility of assigning an intrinsic length to objects in a QEG spacetime is also discussed.



قيم البحث

اقرأ أيضاً

It is postulated that quantum gravity is a sum over causal structures coupled to matter via scale evolution. Quantized causal structures can be described by studying simple matrix models where matrices are replaced by an algebra of quantum mechanical observables. In particular, previous studies constructed quantum gravity models by quantizing the moduli of Laplace, weight and defining-function operators on Fefferman-Graham ambient spaces. The algebra of these operators underlies conformal geometries. We extend those results to include fermions by taking an osp(1|2) Dirac square root of these algebras. The theory is a simple, Grassmann, two-matrix model. Its quantum action is a Chern-Simons theory whose differential is a first-quantized, quantum mechanical BRST operator. The theory is a basic ingredient for building fundamental theories of physical observables.
The possibility of a minimal physical length in quantum gravity is discussed within the asymptotic safety approach. Using a specific mathematical model for length measurements (COM microscope) it is shown that the spacetimes of Quantum Einstein Gravi ty (QEG) based upon a special class of renormalization group trajectories are fuzzy in the sense that there is a minimal coordinate separation below which two points cannot be resolved.
We show how Einstein-Cartan gravity can accommodate both global scale and local scale (Weyl) invariance. To this end, we construct a wide class of models with nonpropagaing torsion and a nonminimally coupled scalar field. In phenomenological applicat ions the scalar field is associated with the Higgs boson. For global scale invariance, an additional field --- dilaton --- is needed to make the theory phenomenologically viable. In the case of the Weyl symmetry, the dilaton is spurious and the theory reduces to a sub-class of one-field models. In both scenarios of scale invariance, we derive an equivalent metric theory and discuss possible implications for phenomenology.
We study random walks on ensembles of a specific class of random multigraphs which provide an effective graph ensemble for the causal dynamical triangulation (CDT) model of quantum gravity. In particular, we investigate the spectral dimension of the multigraph ensemble for recurrent as well as transient walks. We investigate the circumstances in which the spectral dimension and Hausdorff dimension are equal and show that this occurs when rho, the exponent for anomalous behaviour of the resistance to infinity, is zero. The concept of scale dependent spectral dimension in these models is introduced. We apply this notion to a multigraph ensemble with a measure induced by a size biased critical Galton-Watson process which has a scale dependent spectral dimension of two at large scales and one at small scales. We conclude by discussing a specific model related to four dimensional CDT which has a spectral dimension of four at large scales and two at small scales.
We study gravity coupled to scalar and fermion fields in the Einstein-Cartan framework. We discuss the most general form of the action that contains terms of mass dimension not bigger than four, leaving out only contributions quadratic in curvature. By resolving the theory explicitly for torsion, we arrive at an equivalent metric theory containing additional six-dimensional operators. This lays the groundwork for cosmological studies of the theory. We also perform the same analysis for a no-scale scenario in which the Planck mass is eliminated at the cost of adding an extra scalar degree of freedom. Finally, we outline phenomenological implications of the resulting theories, in particular to inflation and dark matter production.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا