ترغب بنشر مسار تعليمي؟ اضغط هنا

Multigraph models for causal quantum gravity and scale dependent spectral dimension

137   0   0.0 ( 0 )
 نشر من قبل Georgios Giasemidis
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study random walks on ensembles of a specific class of random multigraphs which provide an effective graph ensemble for the causal dynamical triangulation (CDT) model of quantum gravity. In particular, we investigate the spectral dimension of the multigraph ensemble for recurrent as well as transient walks. We investigate the circumstances in which the spectral dimension and Hausdorff dimension are equal and show that this occurs when rho, the exponent for anomalous behaviour of the resistance to infinity, is zero. The concept of scale dependent spectral dimension in these models is introduced. We apply this notion to a multigraph ensemble with a measure induced by a size biased critical Galton-Watson process which has a scale dependent spectral dimension of two at large scales and one at small scales. We conclude by discussing a specific model related to four dimensional CDT which has a spectral dimension of four at large scales and two at small scales.



قيم البحث

اقرأ أيضاً

We review a recently introduced effective graph approximation of causal dynamical triangulations (CDT), the multigraph ensemble. We argue that it is well suited for analytical computations and that it captures the physical degrees of freedom which ar e important for the reduction of the spectral dimension as observed in numerical simulations of CDT. In addition multigraph models allow us to study the relationship between the spectral dimension and the Hausdorff dimension, thus establishing a link to other approaches to quantum gravity
Within the asymptotic safety scenario for gravity various conceptual issues related to the scale dependence of the metric are analyzed. The running effective field equations implied by the effective average action of Quantum Einstein Gravity (QEG) an d the resulting families of resolution dependent metrics are discussed. The status of scale dependent vs. scale independent diffeomorphisms is clarified, and the difference between isometries implemented by scale dependent and independent Killing vectors is explained. A concept of scale dependent causality is proposed and illustrated by various simple examples. The possibility of assigning an intrinsic length to objects in a QEG spacetime is also discussed.
An important probe of quantum geometry is its spectral dimension, defined via a spatial diffusion process. In this work we study the spectral dimension of a ``spatial hypersurface in a manifoldlike causal set using the induced spatial distance functi on. In previous work, the diffusion was taken on the full causal set, where the nearest neighbours are unbounded in number. The resulting super-diffusion leads to an increase in the spectral dimension at short diffusion times, in contrast to other approaches to quantum gravity. In the current work, by using a temporal localisation in the causal set, the number of nearest spatial neighbours is rendered finite. Using numerical simulations of causal sets obtained from $d=3$ Minkowski spacetime, we find that for a flat spatial hypersurface, the spectral dimension agrees with the Hausdorff dimension at intermediate scales, but shows clear indications of dimensional reduction at small scales, i.e., in the ultraviolet. The latter is a direct consequence of ``discrete asymptotic silence at small scales in causal sets.
68 - Etera R. Livine 2021
We investigate the propagator of 3d quantum gravity, formulated as a discrete topological path integral. We define it as the Ponzano-Regge amplitude of the solid cylinder swept by a 2d disk evolving in time. Quantum states for a 2d disk live in the t ensor products of N spins, where N is the number of holonomy insertions connecting to the disk boundary. We formulate the cylindric amplitude in terms of a transfer matrix and identify its eigen-modes in terms of spin recoupling. We show that the propagator distinguishes the subspaces with different total spin and may select the vanishing total spin sector at late time depending on the chosen cylinder boundary data. We discuss applications to quantum circuits and the possibility of experimental simulations of this 3d quantum gravity propagator.
We investigate the underlying quantum group symmetry of 2d Liouville and dilaton gravity models, both consolidating known results and extending them to the cases with $mathcal{N} = 1$ supersymmetry. We first calculate the mixed parabolic representati on matrix element (or Whittaker function) of $text{U}_q(mathfrak{sl}(2, mathbb{R}))$ and review its applications to Liouville gravity. We then derive the corresponding matrix element for $text{U}_q(mathfrak{osp}(1|2, mathbb{R}))$ and apply it to explain structural features of $mathcal{N} = 1$ Liouville supergravity. We show that this matrix element has the following properties: (1) its $qto 1$ limit is the classical $text{OSp}^+(1|2, mathbb{R})$ Whittaker function, (2) it yields the Plancherel measure as the density of black hole states in $mathcal{N} = 1$ Liouville supergravity, and (3) it leads to $3j$-symbols that match with the coupling of boundary vertex operators to the gravitational states as appropriate for $mathcal{N} = 1$ Liouville supergravity. This object should likewise be of interest in the context of integrability of supersymmetric relativistic Toda chains. We furthermore relate Liouville (super)gravity to dilaton (super)gravity with a hyperbolic sine (pre)potential. We do so by showing that the quantization of the target space Poisson structure in the (graded) Poisson sigma model description leads directly to the quantum group $text{U}_q(mathfrak{sl}(2, mathbb{R}))$ or the quantum supergroup $text{U}_q(mathfrak{osp}(1|2, mathbb{R}))$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا