ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamics of Weyl Scale Invariant non-BPS p=3 Branes

58   0   0.0 ( 0 )
 نشر من قبل LuXin Liu
 تاريخ النشر 2006
  مجال البحث
والبحث باللغة English
 تأليف Lu-Xin Liu




اسأل ChatGPT حول البحث

In this paper a Weyl scale invariant $p=3$ brane scenario is introduced, with the brane embedded in a higher dimensional bulk space with $N=1, 5D$ Super--Weyl symmetry. Its action, which describes its long wave oscillation modes into the ambient superspace and breaks the target symmetry down to the lower dimensional Weyl W(1,3) symmetry, is constructed by the approach of coset method.



قيم البحث

اقرأ أيضاً

We study extremal non-BPS black holes and strings arising in M-theory compactifications on Calabi-Yau threefolds, obtained by wrapping M2 branes on non-holomorphic 2-cycles and M5 branes on non-holomorphic 4-cycles. Using the attractor mechanism we c ompute the black hole mass and black string tension, leading to a conjectural formula for the asymptotic volumes of connected, locally volume-minimizing representatives of non-holomorphic, even-dimensional homology classes in the threefold, without knowledge of an explicit metric. In the case of divisors we find examples where the volume of the representative corresponding to the black string is less than the volume of the minimal piecewise-holomorphic representative, predicting recombination for those homology classes and leading to stable, non-BPS strings. We also compute the central charges of non-BPS strings in F-theory via a near-horizon $AdS_3$ limit in 6d which, upon compactification on a circle, account for the asymptotic entropy of extremal non-supersymmetric 5d black holes (i.e., the asymptotic count of non-holomorphic minimal 2-cycles).
56 - Lu-Xin Liu 2006
The action of Weyl scale invariant p=2 brane which breaks the target super Weyl scale symmetry in the N=1, D=4 superspace down to the lower dimensional Weyl symmetry W(1,2) is derived by the approach of nonlinear realization. The dual form action for the Weyl scale invariant supersymmetric D2 brane is also constructed. The interactions of localized matter fields on the brane with the Nambu-Goldstone fields associated with the breaking of the symmetries in the superspace and one spatial translation directions are obtained through the Cartan one-forms of the Coset structures. The covariant derivatives for the localized matter fields are also obtained by introducing Weyl gauge field as the compensating field corresponding to the local scale transformation on the brane world volume.
90 - M. Frau , L. Gallot , A. Lerda 2000
We review the boundary state description of the non-BPS D-branes in the type I string theory and show that the only stable configurations are the D-particle and the D-instanton. We also compute the gauge and gravitational interactions of the non-BPS D-particles and compare them with the interactions of the dual non-BPS particles of the heterotic string finding complete agreement. In this way we provide further dynamical evidence of the heterotic/type I duality.
73 - M. Frau , L. Gallot , A. Lerda 1999
We use the boundary state formalism to study, from the closed string point of view, superpositions of branes and anti-branes which are relevant in some non-perturbative string dualities. Treating the tachyon instability of these systems as proposed b y A. Sen, we show how to incorporate the effects of the tachyon condensation directly in the boundary state. In this way we manage to show explicitly that the D1 -- anti-D1 pair of Type I is a stable non-BPS D-particle, and compute its mass. We also generalize this construction to describe other non-BPS D-branes of Type I. By requiring the absence of tachyons in the open string spectrum, we find which configurations are stable and compute their tensions. Our classification is in complete agreement with the results recently obtained using the K-theory of space-time.
Scalar fields, $phi_i$ can be coupled non-minimally to curvature and satisfy the general criteria: (i) the theory has no mass input parameters, including the Planck mass; (ii) the $phi_i$ have arbitrary values and gradients, but undergo a general exp ansion and relaxation to constant values that satisfy a nontrivial constraint, $K(phi_i) =$ constant; (iii) this constraint breaks scale symmetry spontaneously, and the Planck mass is dynamically generated; (iv) there can be adequate inflation associated with slow roll in a scale invariant potential subject to the constraint; (v) the final vacuum can have a small to vanishing cosmological constant (vi) large hierarchies in vacuum expectation values can naturally form; (vii) there is a harmless dilaton which naturally eludes the usual constraints on massless scalars. These models are governed by a global Weyl scale symmetry and its conserved current, $K_mu$ . At the quantum level the Weyl scale symmetry can be maintained by an invariant specification of renormalized quantities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا