ﻻ يوجد ملخص باللغة العربية
In this paper a Weyl scale invariant $p=3$ brane scenario is introduced, with the brane embedded in a higher dimensional bulk space with $N=1, 5D$ Super--Weyl symmetry. Its action, which describes its long wave oscillation modes into the ambient superspace and breaks the target symmetry down to the lower dimensional Weyl W(1,3) symmetry, is constructed by the approach of coset method.
We study extremal non-BPS black holes and strings arising in M-theory compactifications on Calabi-Yau threefolds, obtained by wrapping M2 branes on non-holomorphic 2-cycles and M5 branes on non-holomorphic 4-cycles. Using the attractor mechanism we c
The action of Weyl scale invariant p=2 brane which breaks the target super Weyl scale symmetry in the N=1, D=4 superspace down to the lower dimensional Weyl symmetry W(1,2) is derived by the approach of nonlinear realization. The dual form action for
We review the boundary state description of the non-BPS D-branes in the type I string theory and show that the only stable configurations are the D-particle and the D-instanton. We also compute the gauge and gravitational interactions of the non-BPS
We use the boundary state formalism to study, from the closed string point of view, superpositions of branes and anti-branes which are relevant in some non-perturbative string dualities. Treating the tachyon instability of these systems as proposed b
Scalar fields, $phi_i$ can be coupled non-minimally to curvature and satisfy the general criteria: (i) the theory has no mass input parameters, including the Planck mass; (ii) the $phi_i$ have arbitrary values and gradients, but undergo a general exp