ﻻ يوجد ملخص باللغة العربية
We use the boundary state formalism to study, from the closed string point of view, superpositions of branes and anti-branes which are relevant in some non-perturbative string dualities. Treating the tachyon instability of these systems as proposed by A. Sen, we show how to incorporate the effects of the tachyon condensation directly in the boundary state. In this way we manage to show explicitly that the D1 -- anti-D1 pair of Type I is a stable non-BPS D-particle, and compute its mass. We also generalize this construction to describe other non-BPS D-branes of Type I. By requiring the absence of tachyons in the open string spectrum, we find which configurations are stable and compute their tensions. Our classification is in complete agreement with the results recently obtained using the K-theory of space-time.
We review the boundary state description of the non-BPS D-branes in the type I string theory and show that the only stable configurations are the D-particle and the D-instanton. We also compute the gauge and gravitational interactions of the non-BPS
We review the boundary state description of D-branes in type I string theory and show that the only stable non-BPS configurations are the D-particle and the D-instanton. We also compute the gauge and gravitational interactions of the non-BPS D-partic
We discuss a set of heterotic and type II string theory compactifications to 1+1 dimensions that are characterized by factorized internal worldsheet CFTs of the form $V_1otimes bar V_2$, where $V_1, V_2$ are self-dual (super) vertex operator algebras
We study extremal non-BPS black holes and strings arising in M-theory compactifications on Calabi-Yau threefolds, obtained by wrapping M2 branes on non-holomorphic 2-cycles and M5 branes on non-holomorphic 4-cycles. Using the attractor mechanism we c
We study a matrix version of the purely cubic open string field theory as describing the expansion around the closed string vacuum. Any D-branes in the given closed string background can appear as classical solutions by using the identity projectors.