ترغب بنشر مسار تعليمي؟ اضغط هنا

The SL(2,R)WZWN string model as a deformed oscillator and its classical-quantum string regimes

94   0   0.0 ( 0 )
 نشر من قبل Norma Sanchez
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the SL(2,R) WZWN string model describing bosonic string theory in AdS_3 space-time as a deformed oscillator together with its mass spectrum and the string modified SL(2,R) uncertainty relation. The SL(2,R) string oscillator is far more quantum (with higher quantum uncertainty) and more excited than the non deformed one. This is accompassed by the highly excited string mass spectrum which is drastically changed with respect to the low excited one. The highly excited quantum string regime and the low excited semiclassical regime of the SL(2,R) string model are described and shown to be the quantum-classical dual of each other in the precise sense of the usual classical-quantum duality. This classical-quantum realization is not assumed nor conjectured. The quantum regime (high curvature) displays a modified Heisenbergs uncertainty relation, while the classical (low curvature) regime has the usual quantum mechanics uncertainty principle.



قيم البحث

اقرأ أيضاً

We study the relativistic quantum dynamics of a DKP oscillator field subject to a linear interaction in cosmic string space-time in order to better understand the effects of gravitational fields produced by topological defects on the scalar field. We obtain the solution of DKP oscillator in the cosmic string background. Also, we solve it with an ansatz in presence of linear interaction. We obtain the eigenfunctions and the energy levels of the relativistic field in that background.
We obtain classical string solutions on RxS^2 by applying the dressing method on string solutions with elliptic Pohlmeyer counterparts. This is realized through the use of the simplest possible dressing factor, which possesses just a pair of poles ly ing on the unit circle. The latter is equivalent to the action of a single Backlund transformation on the corresponding sine-Gordon solutions. The obtained dressed elliptic strings present an interesting bifurcation of their qualitative characteristics at a specific value of a modulus of the seed solutions. Finally, an interesting generic feature of the dressed strings, which originates from the form of the simplest dressing factor and not from the specific seed solution, is the fact that they can be considered as drawn by an epicycle of constant radius whose center is running on the seed solution. The radius of the epicycle is directly related to the location of the poles of the dressing factor.
We introduce a spin chain based on finite-dimensional spin-1/2 SU(2) representations but with a non-hermitian `Hamiltonian and show, using mostly analytical techniques, that it is described at low energies by the SL(2,R)/U(1) Euclidian black hole Con formal Field Theory. This identification goes beyond the appearance of a non-compact spectrum: we are also able to determine the density of states, and show that it agrees with the formulas in [J. Math. Phys. 42, 2961 (2001)] and [JHEP 04, 014 (2002)], hence providing a direct `physical measurement of the associated reflection amplitude.
String theory developed by demanding consistency with quantum mechanics. In this paper we wish to reverse the reasoning. We pretend open string field theory is a fully consistent definition of the theory - it is at least a self consistent sector. The n we find in its structure that the rules of quantum mechanics emerge from the non-commutative nature of the basic string joining/splitting interactions, thus deriving rather than assuming the quantum commutation rules among the usual canonical quantum variables for all physical systems derivable from open string field theory. Morally we would apply such an argument to M-theory to cover all physics. If string or M-theory really underlies all physics, it seems that the door has been opened to an understanding of the origins of quantum mechanics.
We study string scattering amplitudes by using the deformed cubic string field theory which is equivalent to the string field theory in the proper-time gauge. The four-string scattering amplitudes with three tachyons and an arbitrary string state are calculated. The string field theory yields the string scattering amplitudes evaluated on the world sheet of string scattering whereas the coventional method, based on the first quantized theory brings us the string scattering amplitudes defined on the upper half plane. For the highest spin states, generated by the primary operators, both calculations are in perfect agreement. In this case, the string scattering amplitudes are invariant under the conformal transformation, which maps the string world sheet onto the upper half plane. If the external string states are general massive states, generated by non-primary field operators, we need to take into account carefully the conformal transformation between the world sheet and the upper half plane. We show by an explicit calculation that the string scattering amplitudes calculated by using the deformed cubic string field theory transform into those of the first quantized theory on the upper half plane by the conformal transformation, generated by the Schwarz-Christoffel mapping.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا