ترغب بنشر مسار تعليمي؟ اضغط هنا

Dressed Elliptic String Solutions on RxS^2

109   0   0.0 ( 0 )
 نشر من قبل Georgios Pastras
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We obtain classical string solutions on RxS^2 by applying the dressing method on string solutions with elliptic Pohlmeyer counterparts. This is realized through the use of the simplest possible dressing factor, which possesses just a pair of poles lying on the unit circle. The latter is equivalent to the action of a single Backlund transformation on the corresponding sine-Gordon solutions. The obtained dressed elliptic strings present an interesting bifurcation of their qualitative characteristics at a specific value of a modulus of the seed solutions. Finally, an interesting generic feature of the dressed strings, which originates from the form of the simplest dressing factor and not from the specific seed solution, is the fact that they can be considered as drawn by an epicycle of constant radius whose center is running on the seed solution. The radius of the epicycle is directly related to the location of the poles of the dressing factor.



قيم البحث

اقرأ أيضاً

We analyse several physical aspects of the dressed elliptic strings propagating on $mathbb{R} times mathrm{S}^2$ and of their counterparts in the Pohlmeyer reduced theory, i.e. the sine-Gordon equation. The solutions are divided into two wide classes ; kinks which propagate on top of elliptic backgrounds and those which are non-localised periodic disturbances of the latter. The former class of solutions obey a specific equation of state that is in principle experimentally verifiable in systems which realize the sine-Gordon equation. Among both of these classes, there appears to be a particular class of interest the closed dressed strings. They in turn form four distinct subclasses of solutions. Unlike the closed elliptic strings, these four subclasses, exhibit interactions among their spikes. These interactions preserve a carefully defined turning number, which can be associated to the topological charge of the sine-Gordon counterpart. One particular class of those closed dressed strings realizes instabilities of the seed elliptic solutions. The existence of such solutions depends on whether a superluminal kink with a specific velocity can propagate on the corresponding elliptic sine-Gordon solution. Finally, the dispersion relations of the dressed strings are studied. A qualitative difference between the two wide classes of dressed strings is discovered. This would be an interesting subject for investigation in the dual field theory.
We construct rolling tachyon solutions of open and boundary string field theory (OSFT and BSFT, respectively), in the bosonic and supersymmetric (susy) case. The wildly oscillating solution of susy OSFT is recovered, together with a family of time-de pendent BSFT solutions for the bosonic and susy string. These are parametrized by an arbitrary constant r involved in solving the Green equation of the target fields. When r=0 we recover previous results in BSFT, whereas for r attaining the value predicted by OSFT it is shown that the bosonic OSFT solution is the derivative of the boundary one; in the supersymmetric case the relation between the two solutions is more complicated. This technical correspondence sheds some light on the nature of wild oscillations, which appear in both theories whenever r>0.
We investigate BPS solutions in ABJM theory on RxS^2. We find new BPS solutions, which have nonzero angular momentum as well as nontrivial configurations of fluxes. Applying the Higgsing procedure of arxiv:0803.3218 around a 1/2-BPS solution of ABJM theory, one obtains N=8 super Yang-Mills (SYM) on RxS^2. We also show that other BPS solutions of the SYM can be obtained from BPS solutions of ABJM theory by this higgsing procedure.
We study the SL(2,R) WZWN string model describing bosonic string theory in AdS_3 space-time as a deformed oscillator together with its mass spectrum and the string modified SL(2,R) uncertainty relation. The SL(2,R) string oscillator is far more quant um (with higher quantum uncertainty) and more excited than the non deformed one. This is accompassed by the highly excited string mass spectrum which is drastically changed with respect to the low excited one. The highly excited quantum string regime and the low excited semiclassical regime of the SL(2,R) string model are described and shown to be the quantum-classical dual of each other in the precise sense of the usual classical-quantum duality. This classical-quantum realization is not assumed nor conjectured. The quantum regime (high curvature) displays a modified Heisenbergs uncertainty relation, while the classical (low curvature) regime has the usual quantum mechanics uncertainty principle.
We apply an arbitrary number of dressing transformations to a static minimal surface in AdS(4). Interestingly, a single dressing transformation, with the simplest dressing factor, interrelates the latter to solutions of the Euclidean non linear sigma model in dS(3). We present an expression for the area element of the dressed minimal surface in terms of that of the initial one and comment on the boundary region of the dressed surface. Finally, we apply the above formalism to the elliptic minimal surfaces and obtain new ones.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا