ﻻ يوجد ملخص باللغة العربية
We obtain classical string solutions on RxS^2 by applying the dressing method on string solutions with elliptic Pohlmeyer counterparts. This is realized through the use of the simplest possible dressing factor, which possesses just a pair of poles lying on the unit circle. The latter is equivalent to the action of a single Backlund transformation on the corresponding sine-Gordon solutions. The obtained dressed elliptic strings present an interesting bifurcation of their qualitative characteristics at a specific value of a modulus of the seed solutions. Finally, an interesting generic feature of the dressed strings, which originates from the form of the simplest dressing factor and not from the specific seed solution, is the fact that they can be considered as drawn by an epicycle of constant radius whose center is running on the seed solution. The radius of the epicycle is directly related to the location of the poles of the dressing factor.
We analyse several physical aspects of the dressed elliptic strings propagating on $mathbb{R} times mathrm{S}^2$ and of their counterparts in the Pohlmeyer reduced theory, i.e. the sine-Gordon equation. The solutions are divided into two wide classes
We construct rolling tachyon solutions of open and boundary string field theory (OSFT and BSFT, respectively), in the bosonic and supersymmetric (susy) case. The wildly oscillating solution of susy OSFT is recovered, together with a family of time-de
We investigate BPS solutions in ABJM theory on RxS^2. We find new BPS solutions, which have nonzero angular momentum as well as nontrivial configurations of fluxes. Applying the Higgsing procedure of arxiv:0803.3218 around a 1/2-BPS solution of ABJM
We study the SL(2,R) WZWN string model describing bosonic string theory in AdS_3 space-time as a deformed oscillator together with its mass spectrum and the string modified SL(2,R) uncertainty relation. The SL(2,R) string oscillator is far more quant
We apply an arbitrary number of dressing transformations to a static minimal surface in AdS(4). Interestingly, a single dressing transformation, with the simplest dressing factor, interrelates the latter to solutions of the Euclidean non linear sigma