ﻻ يوجد ملخص باللغة العربية
We study the dual gravity description of supersymmetric Wilson loops whose expectation value is unity. They are described by calibrated surfaces that end on the boundary of anti de-Sitter space and are pseudo-holomorphic with respect to an almost complex structure on an eight-dimensional slice of AdS_5 x S^5. The regularized area of these surfaces vanishes, in agreement with field theory non-renormalization theorems for the corresponding operators.
We study supersymmetric Wilson loops from a geometrical perspective. To this end, we propose a new formulation of these operators in terms of an integral form associated to the immersion of the loop into a supermanifold. This approach provides a unif
We study a general class of supersymmetric Wilson loops operator in N = 4 super Yang-Mills theory, obtained as orbits of conformal transformations. These loops are the natural generalization of the familiar circular Wilson-Maldacena operator and thei
We present two new families of Wilson loop operators in N= 6 supersymmetric Chern-Simons theory. The first one is defined for an arbitrary contour on the three dimensional space and it resembles the Zarembos construction in N=4 SYM. The second one in
We continue our study of the correlators of a recently discovered family of BPS Wilson loops in N=4 supersymmetric U(N) Yang-Mills theory. We perform explicit computations at weak coupling by means of analytical and numerical methods finding agreemen
We study the algebra of BPS Wilson loops in 3d gauge theories with N=2 supersymmetry and Chern-Simons terms. We argue that new relations appear on the quantum level, and that in many cases this makes the algebra finite-dimensional. We use our results